
A L G O R I T H M S F O R M U LT I - R O B O T S Y S T E M S O N T H E
C O O P E R AT I V E E X P L O R AT I O N & L A S T- M I L E

D E L I V E RY P R O B L E M S

Dissertation written by
Fernando Ropero Pastor

Under the supervision of
Dra. María Dolores Rodríguez Moreno

Dr. Pablo Muñoz Martínez

International advisor
Dr. Erik Steur

Universidad
de Alcalá

Dissertation submitted to the Polytechnic School of the University of Alcalá, in
partial fulfilment of the requirements for the degree of Doctor of Philosophy

A study on cooperative multi-robot paradigms for the
exploration and last-mile delivery problems

Doctoral Degree in Space Research and Astrobiology
Computer Engineering Department

Polytechnic School
University of Alcalá

2020



Fernando Ropero Pastor: Algorithms for multi-robot systems on the coop-
erative exploration & last-mile delivery problem, A study on cooperative
multi-robot paradigms for the exploration and last-mile delivery prob-
lems, © 2020



A mis padres y mi hermana.





A B S T R A C T

The emergence of Unmanned Aerial Vehicles (UAVs) and Unmanned
Ground Vehicles (UGVs) has conducted the research community to
face historical complex problems by devising UGV-UAV cooperation
paradigms. However, it is usually not a trivial task to determine
whether or not a UGV-UAV cooperation is suitable for a particular
problem. For this reason, in this thesis, we investigate a particular
UGV-UAV cooperation paradigm over two problems in the literature,
and we propose an autonomous controller to test it on simulated
scenarios.

Driven by the planetary exploration, we formulate a particular co-
operative exploration problem consisting of reaching a set of target
points in a large-scale exploration area. This problem defines the UGV
as a moving charging station to carry the UAV through different loca-
tions from where the UAV can reach the target points. Consequently,
we propose the cooperaTive ExploRation Routing Algorithm (TERRA)
to solve it. This algorithm stands out for splitting up the exploration
problem into five sub-problems, in which each sub-problem is solved
in a particular stage of the algorithm. In the same way, driven by the
explosion of parcels delivery in e-commerce companies, we formulate
a generalization of the well-known last-mile delivery problem. This
generalization defines the same UGV’s and UAV’s rol as the explo-
ration problem. That is, the UGV acts as a moving charging station
which carries the parcels along several UAVs to deliver them. In this
way, we follow the split strategy depicted by TERRA to propose the
COoperative Unmanned deliveRIEs planning algoRithm (COURIER).
This algorithm replicates the first four TERRA’s stages, but it builds a
new fifth stage to produce a task plan solving the problem. In order to
evaluate the UGV-UAV cooperation paradigm on simulated scenarios,
we propose the Autonomous coopeRatIve Execution System (ARIES).
This controller follows a hierarchical decentralized leader-follower ap-
proach to integrate any cooperation paradigm in a distributed manner.

Both algorithms have been characterized to identify the relevant
aspects of the cooperation paradigm in the related problems. Also,
both of them demonstrate a great performance of the cooperation
paradigm in such problems, and as well as the autonomous controller,
reveal a great potential for future real applications.

v





R E S U M E N

La cooperación robótica ha evolucionado desde sistemas estáticos, que
intercambian información para completar una tarea en común, a los
actuales sistemas dinámicos capaces de coordinarse y adaptarse para
resolver un problema en función de los objetivos. Esto se debe en
gran medida a la evolución en robótica en las últimas dos décadas. La
aparición de sistemas robóticos con diferentes capacidades ha llevado a
los investigadores a proponer sistemas cooperativos (también llamados
paradigmas de cooperación) que combinen dichas habilidades para
afrontar problemas inabordables hace unos años. No obstante, dada
la naturaleza compleja de determinados problemas, no resulta trivial
conocer el paradigma de cooperación adecuado para resolverlo.

En la literatura se recogen diferentes soluciones cooperativas abor-
dando un amplio espectro de problemas. No obstante, el paradigma de
cooperación entre vehículos autónomos terrestres (Unmanned Ground
Vehicles o UGVs) y vehículos aéreos no tripulados (Unmanned Aerial
Vehicles o UAVs) es uno de los más estudiados. Esto se debe funda-
mentalmente a las sinergias existentes entre las capacidades de ambos
sistemas. Con el objetivo de profundizar en el conocimiento de este
paradigma de cooperación UGV-UAV, esta tesis se centra en el estudio
de su comportamiento y rendimiento en dos problemas en particular:
la exploración planetaria y la entrega de paquetes.

La exploración planetaria es uno de los problemas donde la coop-
eración UGV-UAV presenta grandes expectativas. Esta exploración
supone un pilar central para las agencias de investigación como la
Administración Nacional de la Aeronáutica y del Espacio (National
Aeronautics and Space Administration o NASA) o la Agencia Espacial
Europea (European Space Agency o ESA). Un ejemplo de ello es la
Mars 2020 Mission, en la que NASA pretende dar los primeros pa-
sos para la exploración cooperativa autónoma. Por este motivo, un
objetivo de esta tesis es el estudio de un paradigma de cooperación
UGV-UAV en problemas de exploración. Para ello, primero introduci-
mos el problema de exploración llamado Energy Constrained UAV and
Charging Station UGV Routing Problem (ECU-CSURP). Este problema
tiene como objetivo alcanzar una serie de metas en un área de grandes
dimensiones, donde se busca seguridad y minimizar la distancia recor-
rida. Además, los sistemas robóticos no tienen las habilidades ni la
energía suficiente para realizar la exploración de forma individual.
Por tanto, ambos necesitan cooperar para realizar la exploración satis-
factoriamente. Para resolver el problema, proponemos el cooperaTive
ExploRation Routing Algorithm (TERRA). Este algoritmo implementa un
paradigma de cooperación UGV-UAV, donde el UGV es una estación

vii



de carga móvil que transporta al UAV a lugares desde donde el UAV
puede cargar su batería y despegar para alcanzar los objetivos de
la exploración. Fundamentalmente, TERRA divide el problema de
exploración en cinco sub-problemas, y por tanto, cada sub-problema
es resuelto en una etapa diferente del algoritmo. Para analizar este
algoritmo, hemos evaluado su comportamiento sobre sus parámetros
de entrada y la configuración del problema. En este sentido, hemos
detectado que su rendimiento depende de la energía disponible de
los UAVs y del nivel de agrupación de los objetivos en el área de
exploración. No obstante, ECU-CSURP utiliza una representación del
terreno poco realista y limitada a entornos planos. Por ello, en esta
tesis también extendemos TERRA para poder ejecutarse sobre en-
tornos con elevación. Esta extensión consiste en actualizar las etapas
de TERRA a entornos con elevación, e integrar en TERRA un algo-
ritmo que calcula la ruta del UGV considerando parámetros como la
pendiente del terreno. En este caso, detectamos que la efectividad del
algoritmo depende esencialmente de la complejidad del entorno.

También, el problema de la entrega de paquetes en la última milla
siempre ha supuesto un gran reto para las compañías de comercio
electrónico. Compañías como Amazon o DHL han anunciado su in-
terés por elaborar una solución cooperativa basada en el paradigma
de cooperación UGV-UAV. Desde entonces, la literatura en torno a
este problema y el paradigma de cooperación UGV-UAV ha experi-
mentado un crecimiento exponencial. Por este motivo, otro objetivo
de esta tesis es el estudio del mismo paradigma de cooperación UGV-
UAV en el problema de la entrega de paquetes en la última milla.
Para ello, primero formulamos el problema de entrega de paquetes
llamado multiple UAVs and Charging station Vehicle Last-Mile delivery
Problem (mUCVLMP). Este problema tiene como objetivo entregar un
conjunto de paquetes en diferentes localizaciones distribuidas en un
área de grandes dimensiones en el menor tiempo posible. Además,
estos paquetes han de ser entregados por los UAVs. No obstante, los
UAVs no tienen energía suficiente para realizar todas las entregas por
si mismos, por lo que requieren de un UGV que les transporte. Para
resolver el problema, proponemos el COoperative Unmanned deliveRIEs
planning algoRithm (COURIER). Este algoritmo implementa el mismo
paradigma de cooperación UGV-UAV implementado por TERRA para
problemas de exploración. Además, en este caso, el algoritmo permite
a varios UAVs realizar entregas simultáneas. De este modo, COURIER
se construye con las primeras cuatro etapas de TERRA, pero a diferen-
cia de éste, implementa una nueva quinta etapa que calcula el plan
de entregas completo para resolver el problema. El análisis de este
algoritmo nos muestra que la energía disponible en los UAVs no es
un factor tan determinante como pensábamos, si no que la velocidad
de estos juega un papel importante también. Además, el aumento de

viii



UAVs disponibles no es siempre sinónimo de minimizar los tiempos
de entrega.

Finalmente, en esta tesis proponemos también un controlador autó-
nomo para llevar a cabo la ejecución y testeo del paradigma de co-
operación UGV-UAV utilizado para resolver los problemas de explo-
ración y entrega de paquetes. El controlador llamado Autonomous
coopeRative Execution System (ARIES), comprende una arquitectura
de control que permite el despliegue de cualquier modelo de coop-
eración entre diferentes sistemas robóticos. ARIES es una arquitectura
descentralizada construida sobre el sistema de ejecución Teleo-Reactive
EXecutive (T-REX). Además, utiliza un esquema jerárquico en el que
hay un líder y seguidores, donde el líder es el encargado de deliberar
los planes cooperativos y coordinar la ejecución de los seguidores. En
cambio, los seguidores se limitan a ejecutar las acciones encomendadas
por el líder. Para la evaluación de la arquitectura hemos utilizado es-
cenarios simulados.

ix





“We have to light up the darkness"

— Robert N. Marley, 1945

A C K N O W L E D G M E N T S

En primer lugar, quiero expresar mi más sincero agradecimiento,
respeto y admiración hacia mis directores de tesis, María Dolores
Rodríguez Moreno y Pablo Muñoz Martínez. Desde el primer día
hasta el último, me habéis ayudado desinteresadamente a construir
los cimientos de un camino profesional que desconocía, pero que
ahora me guía. Desde el inicio habéis depositado una confianza ciega
en mí, y me habéis prestado toda la atención y ayuda a vuestro alcance.
Ojalá pudiese expresar todas las gracias que os merecéis.

También, quiero expresar mis agradecimientos a la familia del
grupo de sistemas inteligentes de la Universidad de Alcalá. Sobre
todo a David Fernández Barrero, pues eres un auténtico oráculo de
conocimiento donde acudir, y espejo de ética y trabajo donde reflejarse.
Gracias por tus infinitos consejos que también me has ofrecido siempre
de forma desinteresada. Agradecer también a todos los compañeros
de laboratorio que forman la familia: Dani, Armando y Mario; cuánto
se aprende estando rodeado de gente como vosotros todos los días.

Por supuesto, gracias a mis padres Pedro y Encarna, y mi hermana
Encar, pues son la razón de ser quien soy y de haber alcanzado la meta
profesional que he alcanzado. Gracias por enseñarme la honestidad,
bondad y esfuerzo que hoy me permiten afrontar cualquier reto en mi
vida. Cada día, me enseñáis valores que hoy llevo por bandera.

No me olvido de mis amigos, mi familia elegida, que han aguantado
alguna que otra charla distendida y aburrida sobre mi trabajo durante
los últimos años. Ha sido un placer daros la chapa. Y siempre, siempre,
quiero dar las gracias a mis amigos de siempre, los que están y los
que no, porque siempre han estado y estarán ahí. Siempre resonará tu
eco.

During my research stay in Delft, The Netherlands, I spent a won-
derful time with a lot of researchers working in the Delft Center for
Systems and Control at the Delft University of Technology. In particu-
lar, I would like to express my gratitude and respect to the professor
that allowed me spend such a wonderful time, the Dr. Erik Steur. Many
thanks Erik for your advices and support during my stay.

xi





C O N T E N T S

i the foundations

1 introduction 3

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Structure and contents . . . . . . . . . . . . . . . . . . . 5

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 state of the art 9

2.1 Discrete optimization in robotics: problems & algorithms 9

2.1.1 Nearest Neighbour Search . . . . . . . . . . . . . 13

2.1.2 Set Cover Problem . . . . . . . . . . . . . . . . . 15

2.1.3 Travelling Salesman Problem . . . . . . . . . . . 16

2.2 Heterogeneous cooperative multi-robot systems . . . . 19

2.2.1 Simple UGV-UAV systems . . . . . . . . . . . . 22

2.2.2 Multiple UGV-UAVs systems . . . . . . . . . . . 24

2.3 Autonomous controllers for multi-robot cooperation . 27

2.3.1 A brief introduction to autonomous controllers 27

2.3.2 Deliberation vs Reactivity in intelligent agents . 28

2.3.3 Autonomous controllers for mobile robotic agents 29

2.3.4 Cooperation in autonomous controllers . . . . . 33

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

ii the research studies

3 a cooperative simple ugv-uav path planning al-
gorithm 39

3.1 The exploration problem . . . . . . . . . . . . . . . . . . 39

3.2 The TERRA algorithm for R2 Euclidean spaces . . . . . 41

3.2.1 A Voronoi’s search . . . . . . . . . . . . . . . . . 43

3.2.2 A combinatorial optimization algorithm . . . . 45

3.2.3 A gravitational optimization algorithm . . . . . 46

3.2.4 A genetic algorithm for the UGV’s path . . . . . 48

3.2.5 A search algorithm for the UAV’s path . . . . . 49

3.3 Extending to R3 Euclidean spaces . . . . . . . . . . . . 53

3.3.1 The exploration problem in R3 . . . . . . . . . . 53

3.3.2 Updating TERRA for R3 . . . . . . . . . . . . . . 55

3.4 Experimental evaluation . . . . . . . . . . . . . . . . . . 57

3.4.1 Characterizing TERRA in R2 . . . . . . . . . . . 58

3.4.2 Implications of R3 environments in TERRA . . 64

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 a cooperative multiple ugv–uav(s) task planning

algorithm 69

4.1 A generalization of the last-mile delivery problem . . . 69

4.2 The COURIER algorithm for R2 Euclidean spaces . . . 76

xiii



xiv contents

4.2.1 The geometrical rendezvous method . . . . . . 78

4.2.2 The memetic search for the delivery optimization 89

4.2.3 The arithmetic solver for the task planning . . . 100

4.3 Experimental evaluation . . . . . . . . . . . . . . . . . . 107

4.3.1 Experiment design . . . . . . . . . . . . . . . . . 107

4.3.2 Characterizing the COURIER algorithm . . . . . 110

4.3.3 Performance evaluation compared to the mF-
STSP heuristic approach . . . . . . . . . . . . . . 113

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5 an autonomous controller for cooperative multi-
robot systems 119

5.1 A T-REX overview . . . . . . . . . . . . . . . . . . . . . 119

5.2 From temporal action-based to timeline-based planning 122

5.3 The ARIES autonomous controller . . . . . . . . . . . . 125

5.3.1 The hierarchical execution flow . . . . . . . . . . 126

5.3.2 The leader agent . . . . . . . . . . . . . . . . . . 127

5.3.3 The follower agent . . . . . . . . . . . . . . . . . 130

5.4 Experimental demonstration in the V-REP simulator . 131

5.4.1 Study case. Towards a future Mars exploration
with a heterogeneous simple UGV-UAV system 131

5.4.2 Simulation results . . . . . . . . . . . . . . . . . 134

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

iii the conclusions

6 conclusions & future work 141

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.2 Future lines of work . . . . . . . . . . . . . . . . . . . . 143

iv appendix

a experimental setting for the terra evaluation 149

a.1 Generating random maps using a Gaussian distribution 149

a.2 Tuning the genetic algorithm of the third stage . . . . . 151

b additional experiments of the terra algorithm 155

b.1 Statistical tests . . . . . . . . . . . . . . . . . . . . . . . . 155

b.2 Computational results . . . . . . . . . . . . . . . . . . . 155

c experimental setting for the courier evaluation 157

c.1 Generating TSPLIB instances for the last-mile delivery
problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

c.2 Energy function in COURIER . . . . . . . . . . . . . . . 159

c.3 Tuning the memetic algorithm . . . . . . . . . . . . . . 161

bibliography 165



L I S T O F F I G U R E S

Figure 2.1 Voronoi diagram formed by the convex net of
Voronoi polygons of every point. . . . . . . . . 15

Figure 2.2 Research works progression in UAVs, UGVs,
AUVs and MRS from 1980 to 2019. . . . . . . . 20

Figure 2.3 Research works progression in heterogeneous
multi-robot systems from 1980 to 2019. . . . . 21

Figure 2.4 Multi-robot systems taxonomy focusing on their
cooperative features. . . . . . . . . . . . . . . . 34

Figure 3.1 An ECU-CSURP instance representation. . . . 40

Figure 3.2 A TERRA graphical representation of an ECU-
CSURP instance. . . . . . . . . . . . . . . . . . . 42

Figure 3.3 TERRA’s first stage computing a Voronoi’s Search
method. . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 3.4 TERRA’s second stage computing the Hitting
Set Problem. . . . . . . . . . . . . . . . . . . . . 46

Figure 3.5 TERRA’s third stage computing a gravitational
algorithm. . . . . . . . . . . . . . . . . . . . . . 47

Figure 3.6 TERRA’s fourth and fifth stage computing the
sTSP for the UGV and the UAV. . . . . . . . . . 49

Figure 3.7 An ECU-CSURP instance in a real Mars Digital
Terrain Model. . . . . . . . . . . . . . . . . . . . 54

Figure 3.8 Overall performance of TERRA. . . . . . . . . . 59

Figure 3.9 Results of the gravitational effects in TERRA
with a fixed δ. . . . . . . . . . . . . . . . . . . . 61

Figure 3.10 Results of the gravitational effects in TERRA
with a fixed R. . . . . . . . . . . . . . . . . . . . 63

Figure 4.1 A mUCVLMP instance. . . . . . . . . . . . . . . 70

Figure 4.2 A mUCVLMP graphical representation of the
problem notation. . . . . . . . . . . . . . . . . . 72

Figure 4.3 Comparison between the five stages implemented
by TERRA and COURIER. . . . . . . . . . . . . . 77

Figure 4.4 The fifth stage implemented by COURIER. . . . 77

Figure 4.5 Geometrical properties of a parcel in the ren-
dezvous method. . . . . . . . . . . . . . . . . . 79

Figure 4.6 A task plan example of a simple rendezvous. . 80

Figure 4.7 The distance entanglements of the geometrical
rendezvous method. . . . . . . . . . . . . . . . 81

Figure 4.8 The time entanglements of the geometrical ren-
dezvous method. . . . . . . . . . . . . . . . . . 83

Figure 4.9 A task plan example for vg1 in the Take off
entanglement. . . . . . . . . . . . . . . . . . . . 84

xv



xvi list of figures

Figure 4.10 A task plan example for vg1 in the Land time
entanglement. . . . . . . . . . . . . . . . . . . . 85

Figure 4.11 A task plan example for vg1 in the Total time
entanglement. . . . . . . . . . . . . . . . . . . . 87

Figure 4.12 The genetic information kept in a chromosome
for a configuration. . . . . . . . . . . . . . . . . 90

Figure 4.13 A comparison between a low and high fitness
value of Ftc. . . . . . . . . . . . . . . . . . . . . . 92

Figure 4.14 A comparison between a low and high fitness
value of Ff ree. . . . . . . . . . . . . . . . . . . . . 93

Figure 4.15 A graphical representation of the constructive
procedure implemented in the memetic algo-
rithm. . . . . . . . . . . . . . . . . . . . . . . . . 95

Figure 4.16 An example of a sub-tour with a complex group
vg1 formed by all the time entanglements. . . . 103

Figure 4.17 A possible task plan for the Land time entan-
glement. . . . . . . . . . . . . . . . . . . . . . . 104

Figure 4.18 A possible task plan for the Total time entan-
glement. . . . . . . . . . . . . . . . . . . . . . . 105

Figure 4.19 A possible task plan for the Take off time en-
tanglement. . . . . . . . . . . . . . . . . . . . . . 105

Figure 4.20 Results of the COURIER execution in the 360

generated instances. . . . . . . . . . . . . . . . . 110

Figure 4.21 Impact of the number of UAVs available in the
different configurations for the 360 generated
instances. . . . . . . . . . . . . . . . . . . . . . . 112

Figure 4.22 Final results of the COURIER and mFSTSP-h exe-
cution in the 180 HRHS and LRHS instances for
each number of parcels N = {10, 20, 30}. . . . 115

Figure 4.23 Results of the COURIER and mFSTSP-h execution
in the 180 HRHS and LRHS instances, for each
number of parcels N = {10, 20, 30}. . . . . . . 116

Figure 5.1 A T-REX agent formed by multiple reactors. . 121

Figure 5.2 The translation flow implemented from action-
based to timeline-based planning. . . . . . . . 123

Figure 5.3 An example of a PDDL predicates definition
following an equal action-based and timeline-
based formulation. . . . . . . . . . . . . . . . . 124

Figure 5.4 An example of PDDL temporal action defini-
tion following an equal action-based and timeline-
based formulation. . . . . . . . . . . . . . . . . 124

Figure 5.5 An example of an effects file for a heteroge-
neous simple UGV-UAV system example. . . . 125

Figure 5.6 The ARIES architecture. . . . . . . . . . . . . . 125

Figure 5.7 Basic execution flow in ARIES. . . . . . . . . . 126



list of figures xvii

Figure 5.8 T-REX agents in ARIES following the leader-
follower approach. . . . . . . . . . . . . . . . . 127

Figure 5.9 Mandatory configurations and basic work flows
to deploy the cooperation in ARIES. . . . . . . 129

Figure 5.10 Experimental scene simulated in V-REP and
used for the experimental demonstration of
ARIES. . . . . . . . . . . . . . . . . . . . . . . . 132

Figure 5.11 The ARIES instance deployed for the experi-
mental demonstration in the V-REP simulator. 133

Figure 5.12 Experimental demonstration of ARIES for the
described nominal scenario. . . . . . . . . . . . 134

Figure 5.13 Partial PDDL plan to reach TP1 and TP2 from
CS1 in the nominal scenario. . . . . . . . . . . . 135

Figure 5.14 Partial timeline-based plan translated from the
partial PDDL plan in Figure 5.13. . . . . . . . . 135

Figure 5.15 Execution flow for taking the pictures TP1 and
TP2 whereas the UGV is at CS1. . . . . . . . . 136

Figure A.1 A randomly generated ECU-CSURP instance. 150

Figure A.2 Convergence graph of the genetic algorithm
embedded in TERRA. . . . . . . . . . . . . . . . 152

Figure A.3 Results for the training and testing experiment
of the genetic algorithm. . . . . . . . . . . . . . 153

Figure C.1 Convergence graph of the memetic algorithm
of COURIER. . . . . . . . . . . . . . . . . . . . . 162

Figure C.2 Results for the training and testing experiment
of the memetic algorithm. . . . . . . . . . . . . 163





L I S T O F TA B L E S

Table 2.1 Combinatorial optimization problems and their
robotic applications. . . . . . . . . . . . . . . . . 10

Table 2.2 Proximity and visibility optimization problems
and their robotic applications. . . . . . . . . . . 11

Table 2.3 A brief classification of sub-classes of heteroge-
neous multi-robot systems. . . . . . . . . . . . 22

Table 3.1 Clustering optimization of the first two TERRA’s
stages in different safety levels. . . . . . . . . . 65

Table 3.2 Performance of the complete TERRA algorithm
in different safety levels. . . . . . . . . . . . . . 66

Table 4.1 Speed parameters for the UAV’s configurations. 108

Table 4.2 Power consumption ratios for the UAV’s en-
durance: Low-Range (LR) and High-Range (HR).109

Table 4.3 Battery capacity for the four UAV’s configura-
tions: Low-Range & Low-Speed (LRLS), Low-
Range & High-Speed (LRHS), High-Range &
Low-Speed (HRLS), High-Range & How-Speed
(HRHS). . . . . . . . . . . . . . . . . . . . . . . . 109

Table 4.4 Relevant features of the cooperation approaches
of COURIER and mFSTSP-h. . . . . . . . . . . . . 114

Table 4.5 Summary statistics of the COURIER and mFSTSP-
h execution. . . . . . . . . . . . . . . . . . . . . 117

Table 5.1 Experimental results of executing ARIES in the
nominal scenario and another three scenarios
with different set-ups. . . . . . . . . . . . . . . 137

Table A.1 Parameters space of the genetic algorithm used
for the irace tuning software. . . . . . . . . . . . 152

Table B.1 One Way ANOVA tests results to demonstrate
Lemma 3.4.1. . . . . . . . . . . . . . . . . . . . . 155

Table B.2 One Way ANOVA tests results to demonstrate
Lemma 3.4.2. . . . . . . . . . . . . . . . . . . . . 156

Table B.3 Additional TERRA computational results for
TSPLib instances. . . . . . . . . . . . . . . . . . 156

Table C.1 List of parameters used in the energy function
to compute the UAV’s endurance in distance
and time terms for COURIER. . . . . . . . . . . . 160

Table C.2 Parameters space of the memetic algorithm
used for the irace tuning software. . . . . . . . 162

xix





A C R O N Y M S

UGV Unmanned Ground Vehicle

UAV Unmanned Aerial Vehicle

NASA National Aeronautics and Space Administration

ESA European Space Agency

MHS Mars Helicopter Scout

ILP Integer Linear Programming

TSP Travelling Salesman Problem

VLSI Very Large Scale Integration

WSN Wireless Sensor Network

AUV Autonomous Underwater Vehicle

mTSP Multiple Travelling Salesman Problem

TSPPD Travelling Salesman Problem with Pickup and Delivery

NNS Nearest Neighbour Search

SCP Set Cover Problem

HSP Hitting Set Problem

aTSP asymmetric Travelling Salesman Problem

sTSP symmetric Travelling Salesman Problem

mTSPTW multiple Travelling Salesman Problem with Time Windows

VRP Vehicle Routing Problem

DVRP Distance-constrained Vehicle Routing Problem

ASV Autonomous Surface Vehicle

ISR Intelligence, Surveillance and Reconnaissance

GPS Global Positioning System

FSTSP Flying Sidekick Salesman Problem

TSP-D Travelling Salesman Problem with Drone

TSP-mD Travelling Salesman Problem with multiple Drones

MILP Mixed Integer Linear Programming

mFSTSP multiple Flying Sidekick Salesman Problem

AI Artificial Intelligence

ECSS European Cooperation for Space Standardization

RAP Reactive Action Package

ATLANTIS A Three-Layered Architecture for Navigating Through
Intricate Situations

xxi



xxii acronyms

LAAS Laboratory of Analysis and Architecture of Systems

CLARAty Couple Layered Architecture for Robotic Autonomy

IDEA Intelligent Distributed Execution Architecture

TREX Teleo-Reactive EXecutive

ASyMTRe Automated Synthesis of Multi-robot Task solutions through
software Reconfiguration

HiDDeN High-level Distributed DecisioN

ECU-CSURP Energy Constrained UAV and Charging Station UGV
Routing Problem

TERRA cooperaTive ExploRation Routing Algorithm

DTM Digital Terrain Model

HiRISE High Resolution Imaging Science Experiment

mUCVLMP multiple UAVs and Charging station Vehicle Last-Mile
delivery Problem

COURIER COoperative Unmanned deliveRIEs planning algoRithm

MA Memetic Algorithm

LRLS Low-Range & Low-Speed

LRHS Low-Range & High-Speed

HRLS High-Range & Low-Speed

HRHS High-Range & How-Speed

T-REX Teleo-Reactive EXecutive

ARIES Autonomous coopeRatIve Execution System

PDDL Planning Domain Definition Language

NDDL New Domain Definition Language

DDL Domain Definition Language

GER Generic Executive Reactor

UP2TA Unified Path Planning and Task Planning Architecture

R-Reactor Recover-Reactor

V-REP Virtual Robot Experimentation Platform



Part I

T H E F O U N D AT I O N S

The human being is relentlessly bound to its natural evo-
lution in an unknown and dynamic world. Its evolution
implies bringing out new knowledge aiming to acquire
natural skills to adapt and progress in its habitat. The hu-
man evolution and social history tell us that mostly this
learning is cultivated thanks to the exploration and obser-
vation of the environment. The space research, and more
precisely the planetary exploration, raised under this fun-
damental pillar. Since its foundations, the space industry
has invested a lot of resources to explore hostile and un-
known environments which venture our world knowledge
into new dimensions.





1
I N T R O D U C T I O N

In this chapter we present the basis of the work done in this PhD.
First, we describe the motivation that conducts our research. Then,
we define the objectives and structure of this dissertation. Finally, we
enumerate the publications related to this PhD.

1.1 motivation

As in the human evolution, the cooperation among robotic systems
enables to tackle complex problems that individually might be too in-
tricate. In fact, robotics cooperation is not a new concept, but it always
has been part of robotics. However, it could not evolve properly due
to technology limitations at that time. Nowadays, years of technolog-
ical growth have placed robotics cooperation in the spotlight of the
international research community. Thus, if we follow the cooperation
role in the human evolution, we can envision a bright future for the
robotics cooperation.

Space agencies, such as the National Aeronautics and Space Ad-
ministration (NASA) or the European Space Agency (ESA), are defining
new cooperation paradigms aiming to improve the quality and quan-
tity of the scientific return from their exploration missions. One of
the most studied problems is the area coverage using multiple Un-
manned Ground Vehicles (UGVs) [1] or Unmanned Aerial Vehicles
(UAVs) [2]. Also, we can highlight NASA’s plans to launch the Mars
Helicopter Scout (MHS) along with the Mars 2020 Rover [3]. However,
the MHS is an experimental technology with which NASA pretends to
demonstrate that controlled flight can be executed in the extremely
thin Martian atmosphere. In this way, the MHS could serve as scout
to the rover or human pioneers by taking aerial pictures. In spite of
this cooperation will be managed by a ground operator, the Mars 2020

mission represents a first approach for UGV-UAV cooperation. Besides,
NASA’s objective is to deploy heterogeneous (robots with different
capabilities) UGV-UAV systems that are capable of performing coopera-
tive missions. These first approaches on cooperation paradigms in the
space industry ignited our motivation and driven us for bringing out
a research line to which the present PhD work belongs to.

In line with the robotics cooperation, several e-commerce companies
around the world, such as Amazon, FedEx, DHL or UPS, are investing
a lot of resources to reduce delivery times and expenses. This is the
well-known last-mile delivery problem in the literature and, a lot of
research lines [4–6] have began since the logistics companies decided

3



4 introduction

over 2015 to introduce multiple UGV-UAV cooperation systems into
their delivery services. Since then, the research community is focused
on novel delivery services involving robotic systems which can deploy
a high level of autonomous cooperation to tackle the problem from
different angles. For instance, one of them uses UAVs to depart from
the warehouse (or a human-driven truck) and travel to the customer
location for parcel delivery. Once the parcel is delivered, the UAVs
return to the warehouse. Some companies only use UAVs for the parcel
delivery, such as Amazon, FedEx or DHL, but others, such as UPS,
deploys a human-driven truck to help the UAVs reach their destinations.
Nowadays, the state of the art in robotics cooperation for delivery
services reveals a study field in effervescence. The similarities between
the cooperation paradigms to solve the exploration and the last-mile
delivery problems, along with the current explosion of deliveries of
e-commerce companies, guided our research work through package
delivery problems.

This PhD aims to bring the UGV-UAV cooperation paradigm as a
feasible solution in the robotics industry. Our work is focused on
studying a particular UGV-UAV cooperation paradigm in the explo-
ration and the package delivery problems. The paradigm we study
uses the UGV to carry the UAV through different locations from where
the UAV can reach locations and return to the UGV after completing the
assigned tasks. For addressing each problem, we will design and build
one algorithm. Also, we will devise an autonomous controller to test
the paradigm in simulated scenarios. The state of the art about this
cooperation paradigm just started a few years ago, but we consider
that new studies are required to better investigate the performance in
these particular scenarios.

1.2 objectives

This PhD focuses on the study of the UGV-UAV cooperation paradigm
on the exploration and package delivery problems. Also, we want to
demonstrate the effectiveness of the UGV-UAV cooperation paradigm in
simulated scenarios. Therefore, the objectives of the present research
work can be summarized as follows:

1. Formulating an exploration problem to be addressed by the
UGV-UAV cooperation paradigm.

2. Creating a two-dimensional path planning algorithm considering
the mathematical constraints and objectives of the exploration
problem.

3. Extending the previous algorithm to a three-dimensional path
planning algorithm. The goal is to also consider terrain features
to extract feasible paths and so, to generate cooperative three-
dimensional paths in real scenarios.



1.3 structure and contents 5

4. Formulating a generalization of the last-mile delivery problem
to be addressed by the UGV-UAV cooperation paradigm.

5. Creating a task planning algorithm to solve the formulated
generalization of the last-mile delivery problem. Here, the idea is
to extend the previous two-dimensional path planning algorithm
by considering new constraints into the original problem, e. g.,
temporal coordination or multiple UAVs.

6. Conducting experiments to analyse the performance of the path
planning and task planning algorithms comparing with other
state of the art algorithms.

7. Implementing an autonomous controller capable of manag-
ing a multi-robot system following the UGV-UAV cooperation
paradigm. The objective is to build a cooperative controller us-
ing some existing technology in the literature.

8. Performing simulated experiments to evaluate the behaviour
of the autonomous controller, and so, laying the foundations
of a robotics controller able to deploy the UGV-UAV cooperation
paradigm studied in this research work.

1.3 structure and contents

The structure of this dissertation can be outlined in the following six
chapters:

• Chapter 1: describes the motivation, objectives, structure and
resulting publications of this thesis.

• Chapter 2: presents the state of the art for the different fields that
have been covered. First, it introduces the basis of the discrete
optimization theory applied in the robotics engineering field.
Second, it summarizes particular approaches where cooperative
multi-robot systems are deployed to overcome different prob-
lems. Last, it describes the evolution of autonomous controllers
designed for multi-robot cooperation.

• Chapter 3: proposes a path planning algorithm to exploit a UGV-
UAV cooperation paradigm on exploration problems. First, it
describes a mathematical formulation which contains the defini-
tion and constraints of the exploration problem. Then, it presents
a two-dimensional path planning algorithm integrating the prob-
lem definition, and a three-dimensional path planning consid-
ering the terrain features. The two-dimensional algorithm has
been evaluated using randomly generated maps, meanwhile the
three-dimensional algorithm uses real Mars maps.



6 introduction

• Chapter 4: proposes a task planning algorithm to solve a gen-
eralization of the last-mile delivery problem. First, it presents
the mathematical formulation integrating new constraints to
the original problem definition and, second, the task planning
algorithm modelled as an evolutionary algorithm. The algorithm
has been evaluated using the same random map generator used
for the previous algorithm.

• Chapter 5: describes an autonomous controller for the UGV-UAV

cooperation paradigm exploited in the previous algorithms. It
defines the architecture and its functionality. The controller has
been evaluated under simulated environments.

• Chapter 6: presents the conclusions and discusses some relevant
future research directions.

1.4 publications

The results of this PhD have produced several publications in the field
of AI in multi-robot cooperation and autonomous controllers. The list
of publications is presented as follows:

Fernando Ropero, Daniel Vaquerizo, Pablo Muñoz, and María D.
R-Moreno. “An Advanced Teleassistance System to Improve Life
Quality in the Elderly”. In: International Conference on Industrial, Engi-
neering and Other Applications of Applied Intelligent Systems. Springer.
(2017), pp. 533–542.

Fernando Ropero, Pablo Muñoz, María D. R-Moreno, and David
F. Barrero. “A Virtual Reality Mission Planner for Mars Rovers”.
In: 2017 6th International Conference on Space Mission Challenges for
Information Technology (SMC-IT). IEEE. (2017), pp. 142–146.

Pablo Muñoz, María D. R-Moreno, David F. Barrero, and Fernando
Ropero. “MoBAr: a Hierarchical Action-Oriented Autonomous Con-
trol Architecture”. In: Journal of Intelligent & Robotic Systems (2018),
pp. 1–16.

Fernando Ropero, Pablo Muñoz, and María D. R-Moreno. “A Strate-
gical Path Planner for UGV-UAV Cooperation on Mars Terrains”.
In: International Conference on Innovative Techniques and Applications of
Artificial Intelligence. Springer. (2018), pp. 106–118.

Fernando Ropero, Pablo Muñoz, and María D. R-Moreno. “A Versatile
Executive Based on T-REX for Any Robotic Domain”. In: Interna-
tional Conference on Innovative Techniques and Applications of Artificial
Intelligence. Springer. (2018), pp. 79–91.

Fernando Ropero, Pablo Muñoz, and María D. R-Moreno. “TERRA: A
path planning algorithm for cooperative UGV–UAV exploration”. In:
Engineering Applications of Artificial Intelligence 78 (2019), pp. 260–272.



1.4 publications 7

Fernando Ropero, Daniel Vaquerizo-Hdez, Pablo Muñoz, David F.
Barrero, and Maria D. R-Moreno. “LARES: An AI-based teleassis-
tance system for emergency home monitoring”. In: Cognitive Systems
Research 56 (2019), pp. 213–222.

Fernando Ropero, Pablo Muñoz, and María D. R-Moreno. “ARIES:
An Autonomous Controller For Multirobot Cooperation”. In: IEEE
Aerospace and Electronic Systems Magazine 34.3 (2019), pp. 40–55.





2
S TAT E O F T H E A RT

This chapter contains the state of the art of our research work. First, we
introduce the basis and nomenclature of classic optimization problems
and algorithms applied to robotics. Then, we focus on particular het-
erogeneous cooperative UGV-UAV(s) approaches for different robotic
applications. Finally, we describe the historical evolution and taxon-
omy in autonomous controllers for multi-robot cooperation.

2.1 discrete optimization in robotics : problems & algo-
rithms

The discrete optimization theory is a branch of mathematical optimiza-
tion which studies problems whose variables can only take discrete
values. For instance, some decisions we make in our life are discrete
decisions, that is, particular choices that help us to overcome our daily
problems, such as hang out with friends versus writing a thesis. A
lower number of options helps us to select the particular choices that
solve straightforward problems. However, if the problem requires
making a sequence of decisions, the dimensionality of these problems
increases in an explosion of possible combinations. Simple problems
can become exponentially hard with just a few possibilities. Because
of this, the study of discrete optimization has always been attractive
for the research community since the 18th century.

Many discrete optimization problems in the literature can be for-
mulated as Integer Linear Programming (ILP), where the variables are
restricted to be integers and the objective function and constraints are
linear. The formula can be expressed in the form

min (or max)
n

∑
j=1

cj xj

subject to
n

∑
j=1

aijxj ≥ bi ∀i ∈ {1, 2, . . . , m}

xj ≥ 0 ∀j ∈ {1, 2, . . . , n}

(2.1)

Here, the xj are the decision variables constrained by non-negativity
and the coefficients aij, bi, cj are given rational numbers in m inequali-
ties. The goal is to minimize (or maximize) the sum of xj given weights
cj.

Since the technological advances introduced the computers in the
19th century, there have appeared discrete problems which have

9



10 state of the art

Table 2.1: Combinatorial optimization problems and their robotic applica-
tions

Problem name Complexity Robotic applications

Set Packing NP-Complete
VLSI design [7–9]

Logistics [10–12]

WSN [13–15]

Set Covering NP-Complete
Vehicle routing [16, 17]

Task Allocation [18, 19]

Knapsack NP-Complete
Scheduling [20–23]

Task Allocation [24, 25]

WSN [26, 27]

Generalized

assignment
NP-Complete

Task Allocation [28–30]

Power Management [31, 32]

Travelling

salesman
NP-Complete

Vehicle routing [33, 34]

Scheduling [35–37]

Pick up and delivery [38]

helped to progress a broad spectre of research fields in robotics engi-
neering. Over time, the great variety of problems induced the creation
of a taxonomy in different categories. From the robotics engineering
perspective, we can mention two relevant categories of discrete prob-
lems: combinatorial optimization problems and visibility & proximity
problems.

Combinatorial optimization problems are meant to find an optimal
object from a finite set of objects. This finite set of objects is a dis-
crete set or can be reduced to discrete. Table 2.1 contains a brief list
with combinatorial optimization problems applied in robotics. Each
row contains a different problem, its complexity type (which we will
explain later), and some relevant robotic applications tackling the
problem. As can be noted, the task allocation and scheduling appli-
cations are the most common topics. The task allocation is addressed
through the Set Covering [18, 19], Knapsack [24, 25] and Generalized
assignment [28–30] problems, whereas scheduling applications are
tackled through the Set Cover Problem (SCP) [16, 17] and the Travelling
Salesman Problem (TSP) [33, 34]. These topics investigate the problems
of achieving an optimal task assignment to a multi-robot system sub-
ject to different constraints, such as deadlines or energy constraints.
Also, the vehicle routing topic is one of the most studied problems
in the robotics literature thanks to the TSP. Due to the rising of new
robotics systems such as the UAVs or AUVs, the research community



2.1 discrete optimization in robotics : problems & algorithms 11

Table 2.2: Proximity and visibility optimization problems and their robotic
applications.

Problem name Complexity Robotic applications

Nearest

neighbour search
O(log N)

Motion planning [41–43]

Sensor placement [44, 45]

Art gallery NP-Complete
Sensor placement [46]

Surveillance [47–49]

Facility

location
NP-Complete

Sensor placement [50, 51]

Coverage control [52–54]

Euclidean min.

spanning tree
O(N log N)

Task planning [55, 56]

Vehicle Routing [57–59]

is devoting efforts in different generalizations of the TSP to create new
multi-robot paradigms. For instance, the Multiple Travelling Salesman
Problem (mTSP) [34] which consist of finding tours for all salesman,
who all start and end at the depot, such that each intermediate node is
visited exactly once and the total cost of visiting all nodes is minimized.
Other example is the Travelling Salesman Problem with Pickup and
Delivery (TSPPD) [39] which consists of determining a minimum cost
tour such that each pickup vertex is visited before its corresponding
delivery vertex.

Proximity & visibility optimization problems are those which can
be stated in terms of geometry. This spectrum of problems and the
study of their solutions from a geometrical perspective was originally
initiated by Preparata and Shamos [40]. The proximity term means
distances estimation between geometric objects, and the visibility
term is a mathematical abstraction of the real-life notion of visibility.
These problems have been subject matter in several topics related
to the robotics engineering field, such as motion planning or task
planning. Table 2.2 shows a brief list of very-well studied problems
and some applications in the robotics engineering field. Each row
shows a particular problem, its complexity type, and some relevant
robotic applications tackling the problem. The reader can appreciate
that these problems are particularly focused on smart coverage topics,
such as surveillance or sensors placement, than the combinatorial
optimization problems. This is because of their inherent geometrical
properties, which makes them affordable using geometric algorithms.

In addition to the rising of computers in the 19th century, the intrin-
sic significance of the hardness bounded to these problems, encour-
aged a complete theory to study their taxonomy from their difficulty



12 state of the art

measured in time terms1: the complexity theory. This theory classifies
the problems according to their inherent difficulty. The P class2 [61]
classifies the problems which can be solved by a deterministic Turing
machine in polynomial time. The NP class3 classifies the problems by
stating that: a problem p is in NP if every solution to every problem
instance of p can be verified in polynomial time. There have been
strong efforts in the literature to demonstrate that problems in NP
are tractable. A significant study around this research line has beenA problem is

tractable if it can be
solved by polynomial

time algorithms

the NP-completeness theory introduced by Cook [62, 63]. This theory
states that NP-Complete problems are the hardest problems in NP.
Also, Cook [62] defined the first NP-Complete problem, the satisfi-
ability problem, and proved that a problem is NP-Complete if it is
in NP and can be reduced to the satisfiability problem. Therefore,
if there exist a polynomial time algorithm for even one of the NP-
Complete problems, there is at least one polynomial time algorithm
for all the problems in NP. A year later, Karp [64] provided a list of
21 NP-complete problems (Karp 21’s list)4 proving that these prob-
lems are as least as hard as the satisfiability problem. Since then, the
study of NP-Complete problems has been a key topic in the research
community.

Thus, as there are not polynomial time optimization algorithms to
solve NP-Complete problems (unless P = NP), it is required to find
a lower factor polynomial time algorithm to solve them. Different
methods [65] can be applied to implement algorithms that find a sub-
optimal solution in polynomial time to the NP-Complete problems:
approximation, randomization or heuristics methods are the most
studied. Let us recommend to the reader the book of Cormen et al.
[66], which rigorously covers a broad range of algorithms in depth.

Probably the oldest method to design lower factor polynomial time
algorithms is the approximation method. This method looks for how
closely it is possible to approximate optimal solutions to such prob-
lems in polynomial time [67–70]. For instance, we can highlight the
work of Vazirani [71], which contains a comprehensive compendium
of approximation algorithms for combinatorial and proximity & visi-
bility (called as geometric) problems. Following this method, there are
several techniques to design approximation algorithms such as greedy
algorithms [72, 73], local search [74, 75], dynamic programming [76,
77] or linear programming [78, 79].

A well-studied method is the randomization method, which intro-
duces a degree of randomness in its functional logic aiming to be faster
in running time and simpler to handle than their best known deter-

1 There exist also a classification in space terms, which is the memory required by an
algorithm to execute a program and compute a solution [60].

2 P = deterministic Polynomial time.
3 NP = Non-deterministic Polynomial time.
4 The set packing, set covering and knapsack problems in Table 2.1 are in the Karp 21’s

problems list.



2.1 discrete optimization in robotics : problems & algorithms 13

ministic counterparts. Due to their simplicity and speed, randomized
algorithms have been an important research subject in optimization
problems [80]. Historically, the first randomized algorithms where
oriented to solve geometric problems. The Rabin’s algorithm [81]
is known for being the oldest randomized algorithm. The work of
Agarwal and Sharir [82] and Smid [83] contain several randomized
algorithms applied to geometric problems. However, a meta-heuristic
optimization technique, which develops evolutionary algorithms, has
gained reputation in the randomized computation over the last two
decades. This technique aims to solve optimization problems inspired
by the biological evolution. There are different evolutionary algo-
rithms primarily suited for optimization problems, but the majority
derive from genetic algorithms [84–86] or swarm algorithms [87, 88].
For instance, we can mention the Ant colony optimization algorithm
designed by Colorni et al. [89], a swarm algorithm based on the
pheromone communication method of ants to find the optimal path.
This method is frequently used to solve routing problems [90].

The heuristics methods are also deeply studied in the existing liter-
ature. A heuristic algorithm implements a clear strategy of finding a
sub-optimal solution in the set of all feasible solutions, and thus, solv-
ing an optimization problem more quickly than other classic search
algorithms. Thus, the main questions related to heuristics algorithms
used to be: how do you find a good heuristic? Or how do you evaluate
its effectiveness?. The work of Pearl [91] deals with these questions in a
rigorous manner, and presents basic heuristic-search procedures used
in the literature to solve a broad number of optimization problems.
In this way, the heuristics methods have been relevant in the robotics
engineering field [92]. They have contributed to get sub-optimal solu-
tions to many robotic problems (see Tables 2.1 and 2.2) in a feasible
time. Some of the most studied problems are: motion and routing
problems [93–95], coverage control problems [16, 96] or task planning
problems [97–99].

As the reader can appreciate, the existing literature studying the
discrete optimization problems and algorithms is overwhelming. For
that reason, together with the goal of this dissertation is far away
of providing a wide survey about discrete optimization, the next
subsections describe the particular problems and algorithms that have
been under study in this PhD.

2.1.1 Nearest Neighbour Search

The Nearest Neighbour Search (NNS) is a form of proximity search
and it consists in finding the point in a given set that is nearest to a
given point. Formally, Knuth [100] formulates it as follows:



14 state of the art

Problem 2.1. Given N points in the plane, with preprocessing allowed,
how quickly can a nearest neighbour of a new given query point q be
found?.

Here, the nearest neighbour concept [40] is a relation between two
points on a set such that: point b is a nearest neighbour of point a,
denoted a→ b, if

dist(a, b) = min
c∈S−a

dist(a, c) (2.2)

The current state of the art about the NNS reflects a deep study in
approximation algorithms based on space partitioning. A widely used
algorithm for the NNS is the kd-tree method proposed by Friedman
et al. [101]. Arya et al. [102] present an optimal algorithm to solve the
NNS in fixed dimensions, demonstrating that (1 + ε)-approximations
to the k nearest neighbours of q can be computed in O(kd log N)

time, where d is a real d-dimensional space and ε is any positive real
number. Fukunage and Narendra [103] describe a branch-and-bound
algorithm eliminating the computing of needless distances which
makes it faster. Inspired by computer visions applications, Muja and
Lowe [104] propose a system to help the operator to determine the
most appropriate algorithm given a particular dataset, and describe a
new search algorithm based on hierarchical k-means trees. However,
there are studies stating that the performance of space partitioning
algorithms generally degrades as dimensionality increases. Weber
et al. [105] provide a detailed analysis about the previous affirma-
tion and proposes the sequential VA-file scheme outperforming space
partitioning algorithms. Also, there are other recent algorithms with
promising results, such as the locality-sensitive hashing [106, 107]
based on randomized algorithms or the priority search k-means tree
[108].

Nevertheless, as we explain in the above section, the intrinsic na-
ture of this problem classifies it as a proximity problem. This made
Preparata and Shamos [40] to address the problem from a geometric
perspective. In their work, Preparata and Shamos [40] formulated the
loci of proximity problem to solve the NNS, which states as follows:
Given a set S of N points in the plane, for each point pi in S, what is
the locus of points (x, y) in the plane that are closer to pi than to any
other point of S?. As the solution of this problem is a partition of the
plane into regions, they noted that just searching into this space of
regions, they could solve the NNS. Thus, Preparata and Shamos [40]
were the first who proposed the Voronoi diagrams [109] to solve the
NNS problem.



2.1 discrete optimization in robotics : problems & algorithms 15

The research work presented in this dissertation uses the notation
of Preparata and Shamos [40] for Voronoi diagrams. This notation
formulates a Voronoi diagram as follows:

V(i) =
⋂
i 6=j

H(pi, pj) (2.3)

where V(i) is the Voronoi polygon associated to pi and it is formed
by the intersections of the half-planes H(pi, pj). So, H(pi, pj) contains
the set of points closer to pi than to pj, and it is defined by the perpen-
dicular bisector of pi pj. The convex net of Voronoi polygons form the
called Voronoi diagram (see Figure 2.1). Preparata and Shamos [40]
demonstrate that, computing the Voronoi diagram of a set of N points,
the NNS can be performed in O(log N) time, using O(N) storage and
O(N log N) preprocessing time, which is optimal.

Figure 2.1: Voronoi diagram formed by the convex net of Voronoi polygons
of every point.

Voronoi diagrams have been commonly used in the robotics engi-
neering field due to its geometric properties in space partitioning. One
of the most common applications is path planning [93, 110], where are
used to partition the terrain in Voronoi polygons to obtain smoothed
optimal paths avoiding obstacles and terrain features. Other applica-
tion are localization problems [111] to estimate the robot’s position
in the terrain or to correct robot’s odometry. Also, they have been
applied in coordinated multi-robot exploration [112–114] for space
partitioning of the occupancy cells among the robots.

2.1.2 Set Cover Problem

The SCP is one of the Karp’s 21 NP-Complete problems. As we men-
tioned above, Karp published a paper [64] where he demonstrated that
twenty one combinatorial problems are a reduction from the boolean
satisfiability problem enunciated by Cook [62] (see section 2.1), and



16 state of the art

Algorithm 1 Greedy set cover algorithm

C ← ∅
while C 6= U do

Get the minimum cost-effective set s in S
Update the cost-effectiveness of s as: f = cost(s)

S−C
for e ∈ S− C do

Update cost of picking e equal to f
end for
C ← C ∪ s

end while
return C

thus, showing these problems were NP-Complete. Then, Vazirani [71]
formulates the SCP as follows:

Problem 2.2. Given a universe U of n elements, a collection of subsets
S = {s1, ..., sk}, and a cost function c : S← Q+, find a minimum cost
subcollection of S that covers all elements of U.

Additionally to the notation, Vazirani [71] provides an ILP formula-
tion of the problem, where xs is the decision variable which will take
1 if set S is picked in the set cover, and 0 otherwise:

minimize ∑
s∈S

csxs

subject to ∑
s:e∈S

xs ≥ 1 ∀e ∈ U

xs ∈ {0, 1} ∀s ∈ S

(2.4)

There are plenty of algorithms solving the SCP and its generaliza-
tions. Perhaps, the first approximation algorithm designed to solve
the SCP is the greedy heuristic depicted by Johnson [67], Chvatal [115],
and Lovász [116] in 1979. As Algorithm 1 shows, this greedy heuristic
iteratively picks the most cost-effective set until all elements in the
universe are covered. From this work, other approximation algorithms
came after, such as the rounding technique proposed by Hochbaum
[117], which achieves an approximation factor of the frequency of the
most frequent element by using linear programming relaxation [71].
Also, there are other algorithms referred to generalizations of the SCP,
such as the vertex cover [118], geometric set cover [119], weighted
vertex cover [120], Hitting Set Problem (HSP) [121] or exact cover [122].

2.1.3 Travelling Salesman Problem

The TSP is probably the most studied optimization combinatorial
problem in the literature. It is a generalization of the Hamiltonian
cycle problem, which gets its name from the Irish mathematician W.



2.1 discrete optimization in robotics : problems & algorithms 17

R. Hamilton, who invented the icosian game during the 18th century
[123]. This game is about finding a Hamiltonian cycle in the edge
graph of a dodecahedron. A Hamiltonian cycle is an undirected or
directed graph that visits each vertex exactly once. In 1972, as well
as the SCP previously described, Karp proved that the Hamiltonian
cycle problem is a NP-Complete problem [64], which implied the
NP-hardness of the TSP.

The article A brief History of the Travelling Salesman Problem published
by Cummings [124], states that the first reference of the TSP was
reported by Menger (as the messenger problem) in 1932 [125]. At
the time, the TSP was defined as: the task of finding, for a finite
number of points whose pairwise distances are known, the shortest
path connecting the points. Also, Menger proved the rule that: going
from the starting point to its nearest point, it does not in general
result in the shortest path. Since then, we can tell that the TSP has
had a meteoric rise in several research fields on the literature. From a
mathematical perspective, the TSP can be formulated as follows:

Problem 2.3. Given an undirected graph G = (V, E) and non-negative
distances d : E → Z+ on the edges, the goal is to find a tour T =

{ti, . . . , tn} for i = 1, . . . , n that visits every vj ∈ V in G for j = 1, . . . , n
exactly once, where ti = tn and has minimum total length.

The TSP has also been formulated as an ILP problem using different
formulations. One of the first ILP formulations is ascribed to Dantzig
et al. [126], and it is defined as follows:

minimize
n

∑
i=1

n

∑
j 6=i,j=1

cijxij (2.5)

subject to 0 ≤ xij ≤ 1 ∀i, j ∈ {1, . . . , n} (a)
n

∑
i=1,i 6=j

xij = 1 ∀j ∈ {1, . . . , n} (b)

n

∑
j=1,j 6=i

xij = 1 ∀i ∈ {1, . . . , n} (c)

∑
i∈Q

∑
j∈Q

xij ≤ |Q| − 1 ∀Q 6⊂ {1, . . . , n}, |Q| ≥ 2 (d)

Here, the constraint (a) restricts the decision variable xij to be binary
(xij = 1 means that there is an edge(i, j), and 0 otherwise), the inequal-
ity constraint (b) expresses the fact that exactly one edge enters each
node, the (c) that exactly one edge leaves each node and (d) ensures
that there are not sub-tours among the non-starting vertices.

Traditionally, the TSP has been classified in symmetric Travelling
Salesman Problem (sTSP) and asymmetric Travelling Salesman Prob-
lem (aTSP). That is, if we have a distance dij between the node i and the
node j, in the sTSP dij = dji, and in the aTSP dij 6= dji. However, both



18 state of the art

problems have had a parallel evolution because of their similarities.
Exact algorithms were the first approaches with which researchers
started to study both problems. These approaches have always been
incidental with the ILP formulation. In this way, the branch-and-bound
paradigm appeared in 1976 to solve the sTSP with the work of Miliotis
[127]. This paradigm consists of relaxing some problem constraints
and then regaining feasibility through an enumeration process by
means of a search space. Some of the best known aTSP algorithms
are the developed by Eastman [128], Little et al. [129] or Carpaneto
and Toth [130]. Other approach is the branch-and-cut, which involves
running a branch-and-bound algorithm and a cutting plane method
to tighten linear programming relaxations. This cutting plane meth-
ods [131] helped to design branch-and-cut algorithms [132, 133] to
overcome large sTSP instances. It was in 2003 when Applegate et al.
[134] published the Concorde solver, which is a computer program
that combines some of these approaches to obtain feasible solutions
even in extreme large instances.

Another line of research for the TSP has been the heuristics al-
gorithms, which deliver approximate solutions in reasonable time.
Laporte [135] states that the heuristic design has two main streams:
heuristics focused on guaranteeing a worst-case performance [136,
137] and those focused on a good empirical performance. In this re-
gard, here exist two main approaches related to design heuristics with
a good empirical performance: tour construction and tour improve-
ment approaches. A tour construction heuristic iteratively builds a
solution by adding a new vertex at each step such as the nearest neigh-
bour heuristic [138], insertion algorithms [138, 139] or the Christofide
heuristic [137]. Otherwise, a tour improvement heuristic enhances a
solution by performing an additional improvement step such as the
r-opt algorithm [140], the Lin-Kernighan heuristic [141], simulated
annealing algorithms [142, 143] or tabu search [144]. Additionally, the
randomized improvement has also been studied in the last decades.
These heuristics use randomized algorithms, such as genetic algo-
rithms [145] or ant colony algorithms [90] to obtain nearly optimal
solutions. The recent book of Davendra [146] provides an exhaustive
and updated collection of the state of the art about the techniques and
algorithms that solves the TSP and its generalizations.

A well-studied generalization is the mTSP, which consists of finding
tours for m salesman, who all start and end at the depot, such that
each intermediate node is visited exactly once and the total cost
of visiting all nodes is minimized. The first algorithm to solve the
mTSP was published by Laporte and Nobert [147]. Since then, several
approaches have been proposed as exact algorithms [148, 149] or
heuristic solutions [141, 150]. There also exists important variations
of the mTSP, such as the multiple Travelling Salesman Problem with
Time Windows (mTSPTW) [34], where the nodes need to be visited in a



2.2 heterogeneous cooperative multi-robot systems 19

particular time interval. Also, the mTSP is considered as a relaxation of
the Vehicle Routing Problem (VRP) but without the capacity constraint
of the vehicles.

The work of Dantzig and Ramser [151] proposed the first formula-
tion of the VRP, called as the truck dispatching problem, where the goal
is to route a group of gasoline delivery trucks between a bulk terminal
and a large number of service stations. Laporte [33] explains some of
the most important exact and approximate algorithms developed for
the VRP. As well as for the mTSP, there are generalizations of the VRP,
such as when the length of any route may not exceed a prescribed
bound (Distance-constrained Vehicle Routing Problem (DVRP)) [152],
where a node i needs to be visited before node j. We encourage the
reader to take a look at the work of Braekers et al. [153], which con-
tains an updated and taxonomic overview of the literature published
in the last ten years about the VRP.

We have already presented an overview of the optimization prob-
lems and algorithms existing in the literature that are applied in the
robotics engineering field. Also, we described the particular problems
and algorithms that have been under study in this PhD. So, in the next
section we will talk about the evolution of cooperative multi-robot sys-
tems which formulate discrete optimization problems, and integrate
optimization algorithms to solve them.

2.2 heterogeneous cooperative multi-robot systems

Multi-robot systems were introduced in the literature during the 1980s
[154, 155], but the technological advances at that time delayed their
growth in engineering applications till the late 90’s. As Figure 2.2
shows, the scene on multi-robot systems in the robotic engineering
field has shifted completely during the past three decades. The tech-
nological advances have been relevant for the rising of several mobile
robotic systems such as: the Unmanned Aerial Vehicle (UAV), the
Autonomous Underwater Vehicle (AUV) or the Unmanned Ground Ve-
hicle (UGV). In particular, UAVs have experienced a research explosion
from less than seven thousand works during the 90’s till more than
thirty thousand in the last decade. The expansion in single-robot sys-
tems (UAVs, UGVs or AUVs) might have triggered the investigation
on multi-robot systems, as they have experienced a notable growth
ever since. Figure 2.2 shows a clear lineal evolution in multi-robot
systems research, similar to the linear evolution of the other single
systems.

The fundamental idea behind the multi-robot systems is in the
divide-and-conquer approach, dividing a high-level problem into sub-
problems and then, dispatching these sub-problems to individual
robots of a team and allowing interactions among them to achieve
complex tasks. Thus, the cornerstone of multi-robot systems is not in



20 state of the art

Figure 2.2: Research works progression in UAVs, UGVs, AUVs and Multi-
Robot Systems (MRS) in the literature from 1980 to 2019. Data
obtained from the Web of Science database. Each year shows the
number of works (at 10-year intervals) on each topic following
the boolean expressions: TS=(uav* OR drone* OR MAV*) for
UAVs, TS=(ugv* OR rover*) for UGVs, TS=(auv*) for AUVs and
TS=("Multi-Robot system" or MRS or "multiple robots") for MRS.

the individual complex capabilities but in the cooperation synergies
exploited by them.

Historically, the cooperation in multi-robot systems has been consid-
ered a sub-category of a general term known as collective behaviour
[156, 157]. From a sociology perspective, Giddings [158] defines a col-
lective behaviour as social processes and events which do not reflect existing
social structure (such as laws), but which emerge in an spontaneous way.
From the robotic perspective, Yan et al. [157] summarize a collective
behaviour as any behaviour of agents in a system having more than
one agent. In this way, following other definitions of cooperation in the
robotics literature, Cao et al. [156] define the cooperation behaviour in
multi-robot systems as follows: given some task specified by a designer, a
multi-robot system displays cooperative behaviour if, due to some underlying
cooperation mechanism, there is an increase in the total utility of the system.
Nevertheless, the apparent improvement of multi-robot systems puts
additional burden in setting up or deploying such systems as they can
crash with higher probability during cooperation than single systems.

On this line, we can state that cooperation implies integrating ad-
ditional complex capabilities into the multi-robot system, such as a
communication layer or a robust contingency logic, aiming to achieve
complex tasks that for single-robot systems are not possible. For in-
stance, single-robot systems cannot perform spatially separated tasks
that require coordination in a brief period. Another example is a set
of tasks which requires robots with different capabilities, such as per-
forming oceanographic exploration with AUVs whereas a group of



2.2 heterogeneous cooperative multi-robot systems 21

Figure 2.3: Research works progression in heterogeneous multi-robot sys-
tems (HMRS) from 1980 to 2019. Data obtained from the Web
of Science database. Each year shows the number of works (at
10-year intervals) following the boolean expression: TS=(("Multi-
Robot system" or MRS or "multiple robots" or UAV* or UGV* or
AUV* or MAV*) and heterogeneous).

UAVs perform reconnaissance flights to study the atmospheric con-
ditions at the same time, or drilling the terrain with a UGV while a
group of UAVs perform exploration flights to determine future inter-
esting places to drill. Here, we can devise a wide variety of multi-robot
configurations that can be set up in different ways to deal with any
cooperative problem.

Several works in the literature have dedicated efforts to build a
complete taxonomy of these multi-robot configurations under different
taxonomic axes [159–161]. Although their classifications are based on
criteria approached from different foundations, most of them are in
agreement with a particular taxonomic axe: the multi-robot system
composition. The composition axe classifies the multi-robot systems
based on the capabilities differentiation among the robots. There are
two classes: homogeneous and heterogeneous. That is, if the physical
capabilities of the individual robots are identical, the multi-robot
system is homogeneous. Otherwise, if the capabilities of the robots
are different, i. e., suitable to perform different tasks, the system is
heterogeneous.

Nevertheless, we found that the current state of the art about het-
erogeneous systems has been increasing exponentially during the
last decade (see Figure 2.3), and a more subtle classification of these
systems might be appropriate. For this thesis, in the shake of clarity,
we propose two new classes to classify heterogeneous multi-robot
systems: simple and multiple. That is, if the heterogeneous system
has one robot per category, where a category defines one robot with
a particular set of capabilities, it is a simple system. For instance, if
the robot UGVa and the robot UGVb are in different categories, i. e.,
form a heterogeneous simple system, we notate the system as: UGVa-



22 state of the art

Table 2.3: A brief classification of different multi-robot systems configura-
tions as heterogeneous simple systems or heterogeneous multiple
systems. Note that multiple UAVs and multiple UGVs are configu-
rations where at least two of them are different.

Class Sub-class Configuration

Heterogeneous

Multi-Robot

Systems

Simple
UGV-UAV [162–165]

AUV-UAV [166–168]

ASV-UAV-AUV [169, 170]

Multiple

UGVs [171–173]

UAVs [174–176]

UAV-AUVs [177, 178]

UGV-UAVs [179, 180]

UAV-UGVs [181, 182]

UAVs-UGVs [183, 184]

UGVb. Examples of simple systems are: UGV-UAV (UGV and UAV are
clearly in different categories), UAV-AUV-UGV or UGV1-UGV2-UAV,
where UGV1 is not in the same category than UGV2 because they
have different capabilities. Otherwise, if the heterogeneous system has
more than one robot in at least one category, it is a multiple system.
Examples of multiple systems are: UAVs, UGV-UAVs, UGV1-UGV2s or
UAVs-UGV1-UGV2; where all of them have at least one category with
more than one robot. We have collected some existing works in the
recent literature (see Table 2.3) following our proposed classification.
Here, if the reader goes further, he can appreciate that the average
of the years of publication of the collected works is 2014, which is
another demonstration of the growth of multi-robot systems in the
last decade.

In the following subsection 2.2.1 and subsection 2.2.2, we provide a
detailed description about the state of the art of the two heterogeneous
multi-robot configurations studied in this PhD: simple UGV-UAV and
multiple UGV-UAVs systems.

2.2.1 Simple UGV-UAV systems

The heterogeneous simple UGV-UAV system was one of the first multi-
robot systems to be explored, because of their simplicity (considering
the inherent complexity of multi-robot systems) and the technological
advances in UAVs. The industry quickly became aware of the rise
of these systems and started proposing cooperative solutions to old
complex problems. Here, we can highlight the following three widely



2.2 heterogeneous cooperative multi-robot systems 23

studied problems deploying heterogeneous simple UGV-UAV systems:
guidance, persistent surveillance and exploration problems.

The guidance problem is based on deploying a robotic system for
assisting in the navigation process to others systems. Usually, the UAV
is the robotic system chosen to collect aerial information to guide
the UGV on the ground. Sofman et al. [185] describe methods to
extract relevant information from the environment using a UAV to
enhance the navigation of the UGV. Cantelli et al. [186] propose a
cooperative strategy where the UAV runs a vision tracking algorithm
to automatically follow the UGV, whereas is providing environmental
images of the terrain to the UGV, aiming to build 3D maps and gather
photogrammetry data. Mueggler et al. [187] present a path planner in
which the UAV scans the area and searches for the fastest route for
the UGV in order to deliver a first-aid kit. Harik et al. [188] propose
a guidance scheme in which a UAV provides target points to the
leader UGV which carries objects in unsafe industrial areas. These
methods share a particular characteristic, that is, all of them do not
have information about the environment off-line, so the UAV has to
previously collect aerial data of the terrain to provide on-line support
for the routing of the UGV.

The surveillance and patrolling problem is another well-studied
problem whose goal is to guarantee a proper safety level to a specific
target in a controlled area. Saska et al. [189] introduce a UGV-UAV
system to perform periodical surveillance in indoor environments.
They propose the UGV as a moving station that carries the UAV along
the terrain and, so, the UAV as the flying inspector. Reardon and
Fink [190] describe a cooperative UGV-UAV system to identify threats
to human safety by patrolling the team’s surroundings, identifying
threats, and notifying the human team member. They formulate the
problem as a three-dimensional surveillance task, which generalizes
the art gallery problem and the TSP explained in section 2.1. Manyam
et al. [163] define the cooperative air-ground vehicle routing problem
in which a heterogeneous simple UGV-UAV system is involved. The
objective is to visit a set of targets either by the UAV or the UGV,
keeping alive the communication link between both vehicles. As the
reader can appreciate, the cooperative approach in these works defines
the UAV as the aerial vigilant and the UGV as the ground marshal.

The exploration problem focuses on reaching a set of targets on a
undetermined area, and it is referred to find a path for the multi-robot
system optimizing the overall mission time. The problem of finding
an optimal solution among a set of target points is the TSP (see subsec-
tion 2.1.3). Papachristos and Tzes [191] present a cooperation where
the UGV-UAV team is connected through a power-tethering physical
link, aiming to address the challenge of large-scale exploration mis-
sions. In this way, the team explores the unknown environment, while
incrementally is building the explored world by using sampling-based



24 state of the art

trajectory planning techniques. Maini and Sujit [192] formulate the
Fuel Constrained UAV Refuelling Problem with Mobile Refuelling
Station, in which the UAV has to reach the target points and it uses the
UGV as a moving charging station to place charging stops around the
UGV’s path. This formulation derives from a cooperation paradigm in
which the strategy is: firstly, formulating the SCP (see subsection 2.1.2)
to select the optimal number of UGV’s locations, and secondly, mod-
elling the path planning problem as TSPs. Hood et al. [193] propose
a cooperative exploration where the UAV holds the same relative
position than the UGV but with a certain altitude, providing to the
UGV a birds-eye view beyond terrain obstacles that hinders the ex-
ploration to the UGV. Yu et al. [194] study the problem of routing an
energy-limited UAV to visit a set of places in the least amount of time.
They consider path planning scenarios where the UAV can recharge
by landing on stationary recharging stations or on the UGV acting as
a mobile charging station.

Nowadays, the list of problems under study deploying these systems
keeps growing due to the great cooperation synergies of simple UGV-
UAV systems. For instance, we can mention their research in surveying
operations [195], precision agriculture [162], wildfire detection [196]
or last-mile delivery [4, 197]. Therefore, we can ensure a bright future
for simple UGV-UAV systems.

2.2.2 Multiple UGV-UAVs systems

The multiple UGV-UAVs systems have been experiencing a similar
progress during the last-decade. A multiple UGV-UAVs system is
formed by a single UGV and multiple UAVs. These systems have been
studied in analogous problems, but integrating more UAVs aiming
to improve the efficiency of the solution on different metrics. For in-
stance, maximizing the area covered by partitioning the space into
regions to be covered by different UAVs, reducing the exploration
time by splitting the target points among the UAVs or minimizing
the delivery time of parcels by parallel dispatching among the UAVs.
These examples represent the following three problems on the inves-
tigation of heterogeneous multiple UGV-UAVs systems: surveillance
and patrolling, exploration and last-mile delivery.

The surveillance and patrolling problem has also been studied by
deploying multiple UGV-UAVs systems. We can find in the literature
that this problem is also known as Intelligence, Surveillance and Re-
connaissance (ISR) mission. Primarily, the idea of the ISR mission is
the coordinated acquisition, processing and provision of coherent and
relevant information to support human operator’s activities. Pippin
et al. [198] build a decentralized task assignment and collaboration
platform between multiple UAVs and a car sized UGV in target de-
tection and surveillance tasks. They perform field experiments where



2.2 heterogeneous cooperative multi-robot systems 25

a team of UAVs explore the area looking for a target location. When
one of the UAVs locates the target, it sends a message to the team
members with the target location, so they can navigate to that location
and perform surveillance. Hager et al. [199] present a cooperative
system formed by two UAVs, one UGV and a set of stationary ground
sensors. The UGV is in charge of verifying the identity of a target
thanks to its equipped infra-red sensor. Then, it cooperates with the
UAVs surveillance assets by sharing the predicted target location, and
helping to improve the accuracy of the target localization estimate
through additional measurements. Çaşka and Gayretli [200] study a
cooperative system formed by a UGV carrying a couple of UAVs, aim-
ing to perform persistent ISR missions. They developed an algorithm
which dispatches tasks to the UAVs considering their battery levels.

As well as the surveillance problem, the exploration problem has
also been studied in both single UGV-UAV and multiple UGV-UAVs
configurations. Kim et al. [201] propose a couple of UAVs as a stereo
vision system to assist global path planning for a UGV in GPS-denied
environments. The UAVs follow the UGV by recognising a marker on
the top of the UGV, and also, they are in charge of building a depth
map of ground objects aiming to provide detailed information of
ground obstacles to the UGV. Mas et al. [202] address a leader-follower
approach, based on dual quaternion representations, where the UAVs
keep a formation to escort the UGV through the environment. Shi et al.
[203] present a similar leader-follower approach where the leader is
the UGV and the UAVs are the followers. The UAVs have to keep a
desired formation to track the trajectory of the leader. Their approach
is demonstrated by a system of three UAVs and one UGV. Chen et al.
[204] describe a cooperative path planning problem consisting of one
UGV and two UAVs. The UGV carries the UAVs through the envi-
ronment and the UAVs can take off and land on the carrier for its
energy-saving and recharging tasks. The path planning problem for
the multiple UGV-UAVs system is modelled as a multi-constrained op-
timization problem, then they integrate a particle swarm optimization
algorithm to compute the solution.

As we show in the last paragraph of the above section, the last-mile
delivery problem has been recently studied using single UGV-UAV
systems. In fact, the literature about this topic has experienced an
explosion since logistic companies such as Amazon [205], DHL [206],
UPS [207] or FedEx [208], declared in 2013 [209] their intentions on
developing new delivery paradigms using simple/multiple UGV-UAV
systems to accomplish the arisen last-mile delivery problem. Their
proposal describes the UGV as a truck which carries the parcels and
a set of UAVs through the streets of a city. So, the UAVs deliver
the parcels by taking off and landing on the truck. Among all the
works that have emerged since then, we highlight the work of Murray
and Chu [4], which is considered one of the first dealing with the



26 state of the art

real last-mile delivery problem. They formulated the Flying Sidekick
Salesman Problem (FSTSP), where a set of customers, each of whom
must be served exactly once by either a driver-operated delivery truck
or a UAV operating in coordination with the truck. The reader can
appreciate that the UGV is not fully autonomous in this problem and
the heterogeneous system proposed is based on a simple UGV-UAV.
However, over the last four years several works have emerged address-
ing this topic from the multiple UGV-UAVs systems perspective. This
is the reason why we tackle the problem as a multiple system not as a
simple system.

The work of Ferrandez et al. [5] studies the multiple UGV-UAVs
for the last-mile delivery problem. They design a clustering k-means
algorithm to find suitable locations, from where to perform the deliv-
eries, and required drones per truck. Also, they implement a genetic
algorithm to compute the truck route as a TSP. They also compare
their method with a stand-alone delivery method, demonstrating
that multiple drones are more optimal in time and energy terms.
Motivated by this, Tu et al. [6] define an extension of the Travelling
Salesman Problem with Drone (TSP-D) [210] but with a set of UAVs,
called as Travelling Salesman Problem with multiple Drones (TSP-mD).
Furthermore, they propose two algorithms to solve the TSP-mD; the
first implements a greedy randomized adaptive search procedure and
the second, an heuristic using adaptive large neighbourhood search.
Murray and Raj [179] formulate the multiple Flying Sidekick Salesman
Problem (mFSTSP) arisen from their previous work [4]. They formu-
late the problem as a Mixed Integer Linear Programming (MILP), and
present a three-phased heuristic approach that provides solutions in
reasonable time. Their MILP formulation models a queue scheduling
for UAV arrivals and departures synchronization during the deliveries,
and the flight endurance of each UAV as a function of the UAV’s bat-
tery size, payload, travel distance and flight phases. Also, they analyse
advantages and disadvantages of using the UAVs instead of the truck
to perform the deliveries, and the benefits of adding more UAVs to
an existing fleet. Peng et al. [211] propose a hybrid genetic algorithm
that allows multiple UAVs carried by a truck to simultaneously de-
liver multiple parcels in different locations. The algorithm is split in
three parts: population initialization, crossover and education. They
demonstrate that their algorithm outperforms some existing heuristic
algorithms.

Despite of all of the existing works in the last-mile delivery problem,
most of them consider the UGV as a human-driven delivery truck, so
much efforts are required to provide a high-level of autonomy to these
approaches and to consider a real heterogeneous multiple UGV-UAVs
system.

Nevertheless, the existing literature about heterogeneous cooper-
ative multi-robot systems is extensive because of their impact and



2.3 autonomous controllers for multi-robot cooperation 27

direct applications into real problems. In the next section, we will
talk about autonomous controllers which model these cooperative
multi-robot systems into high-level control architectures to operate a
working team of mobile robotic systems.

2.3 autonomous controllers for multi-robot coopera-
tion

Autonomous controllers represent a current research topic devising
high-level frameworks for enabling the cooperation in multi-robot sys-
tems. Numerous works on autonomous controllers [212, 213] present
studies toward a technology to tackle challenges with a cooperative
robots team. Nevertheless, before to start describing cooperative au-
tonomous controllers, we want to introduce how these controllers
evolved from a simple-robot perspective. Thus, in the next section
we present when autonomous controllers became important in the
research community and what are the main disciplines over which
autonomous controllers have been evolved. Then, we will give special
attention to the main ingredients (deliberation and reactivity) of an
autonomous controller which results in different kind of these archi-
tectures. Finally, we will focus on autonomous controllers designed
for multi-robot cooperation, and we will describe a well-known tax-
onomy to explain the main features to consider in order to design an
autonomous controller for multi-robot cooperation.

2.3.1 A brief introduction to autonomous controllers

The field of distributed robotics has its origins in the late 80s, when sev-
eral researchers began investigating issues in cooperative controllers
for robotics systems [214–216]. Prior to this time, coordination and
interactions of multiple intelligent agents was concentrated on either
single systems or distributed problem-solving systems that did not
involve robotic components. For instance, the book of Bond and Gasser
[217] described several problems and techniques in the distributed
Artificial Intelligence (AI) field. However, this book referred to dis-
tributed cooperation of software agents not mobile robots. As we said,
it was in the late 80s when researchers started to work on coopera-
tive mobile robots and the cooperative behaviour in robots took on
a meaning of its own. The works of Fukuda and Nakagawa [214],
Beni [215] and Asama et al. [216] represented initial approaches in
autonomous controllers for multi-robot cooperation. Since then, many
researchers shifted their focus from single-robot systems to cooperative
multi-robot systems. Nevertheless, the technological constraints at the
time was a major obstacle in the development of physical cooperative
multi-robot solutions.



28 state of the art

However, the technological advances in robotic systems did not
came till the late 90’s (see Figure 2.2), when robotic systems such
as UGVs, UAVs or AUVs were becoming popular in the research
community. It was then that an exponential growth of applied robotic
solutions in various fields of application began. Autonomous con-
trollers were a consequence of the rising of these robotics solutions.
Cao et al. [156] presented in 1995 a genuine review about the evolution
of multi-robot systems at the time, and they envisioned some promis-
ing directions for the cooperative robotics science: (1) Distributed AI,
concerning to the study of distributed systems of intelligent agents.
This discipline is split in distributed problem solving (concerned in
solving a single problem using many agents) and multi-agent systems
(studies the collective behaviour of a group of agents with possible
goal conflicts); (2) Distributed systems, which is mostly related to
the study of multi-robot systems from the distributed computation
perspective, and so, the study of communication issues arisen from
this distribution; and (3) Biological systems, which are referred to
the study of collective behaviours in biological beings such as ants
or bees. After more than 20 years, we can state that the cooperative
autonomous controllers, devised so far, are encapsulated in these disci-
plines. Our research during this PhD has been focused on distributed
systems, more specifically, in the study of autonomous controllers
devised for heterogeneous cooperative multi-robot systems.

2.3.2 Deliberation vs Reactivity in intelligent agents

The concept of a
controller in control
theory is identical to

that of an agent in
AI [218]

Autonomous controllers can be defined as software architectures with
a well-defined structure to control intelligent agents. Russell and
Norvig [218] define an intelligent agent as anything that can be viewed as
perceiving its environment through sensors and acting upon that environment
through actuators. They described four basic agent’s structures: simple
reflex agents, model-based reflex agents, goal-based agents and utility-
based agents. In the following we will briefly describe them, in order
to highlight on their deliberative and reactive capabilities.

Simple reflex agents are purely reactive agents that perceive the
environment and directly select the action to be performed without
considering the perceived history. So, the correct decision of these
agents are only made if the environment is fully observable, which
not always can be achieved. Thus, model-based reflex agents arise to
handle partial observable environments. These agents use a model
of the world to update the world-knowledge of the environment and
how the robot can interact with the updated world. However, they
choose an action in the same reactive way as the reflex agents, which
not always guarantee that the chosen action is the correct decision.
These decisions are usually subordinated to the achievement of a
future state or goal. Then, the goal-based agents born to integrate



2.3 autonomous controllers for multi-robot cooperation 29

the goal information with the states that the agent has to achieve.
This goal information allows the agent to execute a decision-making
process to deliberate the most appropriate action. If the decision-
making process integrates a particular function to select the action
that improves the performance of the agent, we have a utility-based
agent. Here lies the main difference between reactivity (reflex agents)
and deliberation (goal-based or utility agents). A reactive agent just
senses the environment and executes the action which satisfies a
simple condition, i. e., their decision-making process follows a sense-
act cycle. Otherwise, a deliberative agent senses the environment,
deliberates a plan and executes the plan to achieve a goal, i. e., their
decision-making process follows a sense-plan-act cycle.

The reader must note that deliberative agents are not always more
desirable than reactive agents. For instance, lets have a UAV in an
initial location, with a constant speed and partial knowledge of the
environment. The goal of the UAV is to achieve a desired location.
At first, the UAV plans a route considering the partial knowledge of
the environment (such as buildings) and starts flying. Then, the UAV
senses an obstacle on its path (such as a high-voltage tower), so it has
to launch a decision-making process to choose the correct decision
in order to avoid that obstacle. If the decision-making process is too
complex (such as deliberating a new complete route to the goal), it can
require too much computational time to select the appropriate action
before colliding with the obstacle. In this case, a reactive behaviour
is desirable in order to make a decision in a minimal response time.
In this regard, deliberative agents are designed to make decisions
that do not require short response times. However, we want to point
out that it is often a design decision of the developers to select the
most appropriate agent, considering the possibility of coupling both
abilities in a hybrid agent.

2.3.3 Autonomous controllers for mobile robotic agents

According to the above definition of intelligent agents, we can de-
scribe a robot as a physical intelligent agent equipped with sensors
to perceive their environment and actuators to execute actions on
the environment [218]. In particular, mobile robots move over their
environment using mechanisms such as wheels, propellers or legs.
Thus, in order to perform a desired task, it is essential for an intelligent
mobile robot to have the abilities to sense and perceive the working
environment, make a decision (reactive or deliberative) and execute
an appropriate action.

An autonomous controller (also known as autonomous control
architectures) define which abilities should be integrated into an agent
(in this case, a mobile robot) to get desired results with different levels



30 state of the art

of autonomy5. That is, these architectures must decide how to combine
reactive control and deliberative planning to get a feasible solution for
a particular situation. The existing literature shows a wide spectre of
autonomous controllers combining these abilities in several manners.
In fact, a lot of literature have been dedicated to classify these control
architectures by their system composition as follows: behaviour-based
(reactive), deliberative, hybrid (reactive + deliberative) or multi-agent
architectures.

Behaviour-based or reactive architectures are controllers which be-
haviour is determined by a reflex agent. Thus, these controllers fol-
low a sense-act cycle, that is, do not maintain a model of the world
and their decision-making process is based on a collection of prede-
fined actions in order to fulfil the sensed state. One of the most cited
behaviour-based controllers is the Subsumption architecture [220].
This architecture follows a reactive approach with different levels of
competence, being the base level the most reflexive and the higher
levels the ones including more complex behaviours. Thus, it repre-
sents a scalable model, because the lower levels represent elemental
behaviours and the upper levels are complex behaviours attached
to them, subsuming the roles of the lower levels. The Reactive Ac-
tion Package (RAP) [221] controller is another well-known reactive
controller, and it is based on executing, monitoring and replanning
actions from a reactive manner. This architecture proposes a structure
made up of Reactive Action Packages (RAPs). Each RAP is like an
independent unit pursuing its own goals.

These systems present a high performance for making low-level
decisions in real time. Rejecting complex models of the world and de-
liberation capabilities, allow them to select the next action to perform
in a fast sense-act cycle. However, the lack of world knowledge along
with deliberative planning makes these systems vulnerable to high-
level decisions that require a broad knowledge of the environment.

Deliberative architectures are the other side of the coin of reactive
architectures. These controllers are based on goal-based agents and
follow the sense-plan-act cycle. First, the robot senses its surrounding
and creates a world model of the static environment by combining
sensory information. Then, it employs planning to search the appro-
priate action toward the goal and generate a plan to execute. The first
autonomous controllers comprising deliberative capabilities in mobile
robotics were related to control the motion planning of the robots [222,
223].

Takahashi and Schilling [93] define a motion planning controller
for a robot geometrically modelled as a rectangle, in a environment
with polygonal obstacles. They implement a technique that use a

5 The European Cooperation for Space Standardization (ECSS) [219] defines four auton-
omy levels E1-E4. Autonomous controllers are directly related to the highest level
E4.



2.3 autonomous controllers for multi-robot cooperation 31

generalized Voronoi diagram to select the motion path among the
environment. Nagatani et al. [224] also build in execution time a
Voronoi graph of the environment thanks to the sensory information
during the exploration. Yang et al. [225] propose a sophisticated fuzzy
logic motion planning controller. This controller has two deliberation
levels to control a mobile robot in unknown environments. At the
highest level, a fuzzy logic planner merges the input goal with the
sensor information to produce intermediate points that define the
trajectory of the robot. At the lowest level, these points are taken as
sub-goals, and along with a short-range sensory information, the fuzzy
logic planner guides the robot to reach the sub-goal while avoiding
collisions. Huq et al. [226] present a controller that models different
robots schemas and use fuzzy logic to select the suited one based on
the sensory information. High-level schemas use the world-knowledge
to perform motion planning trajectories by partitioning the space using
Voronoi diagrams. Otherwise, low-level schemas use current sensory
data to detect obstacles and avoid them.

From deliberative controllers in mobile robotics, we can highlight
the performance of Voronoi diagrams to build models of the world
in execution time (section 2.1 describes some geometric problems for
motion planning). However, deliberative navigation often requires an
accurate model of the environment for planning global paths. For
simple and static environments this might be feasible, but in complex
and dynamic environments it is required computational resources and
memory to deliberate a proper motion plan. Also, static and fuzzy
control modules might not have all the predefined actions to response
to a dynamic environment. Thus, these approaches may not have a
proper performance in the presence of uncertainty in a real world.

In order to perform autonomous navigation in a real world, it is re-
quired reactive capabilities to provide reactivity in low-level decisions
to face the dynamic world, and deliberative capabilities to integrate
high-level decisions considering a complex model of the world. The
controllers that merge both capabilities are called as hybrid architec-
tures. The most popular schema of hybrid controllers is the three-layer A high-level

deliberation process
usually takes
minutes to compute
a plan

architecture, which consists of a deliberative layer at the top-level, an
executive layer at the middle level and a reactive layer at the bottom
level. The deliberative layer provides a high-level decision making
process to deliberate over complex global goals. It is usually formed
by a planner, which uses predefined models of the world and the
robot system to compute a global plan. The executive layer guarantees
a proper execution of the generated plan following a predefined exe-
cution approach. Then, the reactive layer contains reactive behaviours A low-level control

usually takes
milliseconds to select
the appropriate
action

and sensing capabilities to provide a fast sense-act cycle to the robot.
The Bonasso 3-Tiers architecture [227] is a well-known hybrid ar-

chitecture which follows a three-layer scheme with: the skill layer,
the sequencing layer, and the planning layer. The skill layer is based



32 state of the art

on reactive control loops where the sensors and actuators are tightly
coupled. The sequencing layer provides an execution cycle that selects
the next behaviour to execute by the skill layer. The planning layer is
defined to execute in real-time deliberative algorithms (such as search
algorithms) to compute global plans for the system. As Gat et al.
[227] states, the key idea of this approach is to perform deliberative
planning while the lower layers follow a nominal execution. Other
examples of hybrid layered architectures are: A Three-Layered Archi-
tecture for Navigating Through Intricate Situations (ATLANTIS) [228],
Laboratory of Analysis and Architecture of Systems (LAAS) [229] or
Couple Layered Architecture for Robotic Autonomy (CLARAty) [230].

An evolution of the layered architectures are the multi-agent ar-
chitectures, which are hybrid approaches where the architecture is
decomposed into agents that can integrate reactive, deliberative or
both. The decomposition into agents follows a divide-and-conquer
approach, where each agent deals with a particular problem and the
combination with other agents allows the system to achieve complex
tasks.

The Intelligent Distributed Execution Architecture (IDEA) [231] de-
veloped at NASA in 2002 is an example of multi-agent architectures.
IDEA interleaves deliberative and execution capabilities into the same
framework by sharing a common database of knowledge. In this re-
gard, a controller based in IDEA is a collection of agents, where each
one has a particular purpose and the deliberation is distributed among
them. Then, merging the solutions provided by the different agents,
the full system is able to achieve a global goal.

The Teleo-Reactive EXecutive (TREX) [232] is an autonomous con-
troller which follows the philosophy of the goal-based agents de-
scribed in subsection 2.3.2. T-REX also interleaves deliberation and
execution into a single agent. A T-REX agent is the coordinator of a
set of control modules. Thus, each control module (also called reactor)
encapsulates the sense-plan-act cycle in a closed-control loop to act
over particular sub-goals of the global mission goal. The T-REX con-
troller is the multi-agent architecture that has been addressed in this
PhD for the deployment of multi-robot cooperation.

Although any kind of the presented system compositions can be
applied to build autonomous controllers for multi-robot cooperation,
multi-agent architectures might represent the most suitable approaches
for the following reasons: first, they combine the deliberation and re-
active capabilities as well as the hybrid architectures, which gives
them all the advantages of the first three systems compositions; and
second, they introduce a system decomposition into agents and a
communication framework that promotes them for their deployment
in distributed systems. That is, each agent is able to represent a hy-
brid system into itself, meaning that can be used to control a single



2.3 autonomous controllers for multi-robot cooperation 33

robot system6. As well as intelligent agents, the design of cooperative
autonomous controllers is a developer’s decision. Thus, in the next sec-
tion, we will see how cooperation affects the design and classification
of autonomous controllers for multi-robot systems.

2.3.4 Cooperation in autonomous controllers

Autonomous controllers for multi-robot cooperation are mostly built
on top of the system compositions presented in the previous sub-
section. However, these cooperative controllers cannot be simple re-
garded as a generalization of single-robot controllers, because the
embedding of coordination capabilities implies addressing additional
questions. These questions are discussed in the literature [213, 233]
as the relevant features that may characterize a cooperative controller.
Iocchi et al. [233] propose a taxonomy that classifies cooperative au-
tonomous controllers from these different features. This taxonomy
splits up cooperative autonomous controllers into four levels (see Fig-
ure 2.4): the cooperation level, the knowledge level, the coordination
level and the organization level. In the following we will describe each
of these levels and some well-known autonomous controllers in the
literature that deploy cooperation mechanisms.

At the cooperation level, Iocchi et al. [233] follow the cooperation
definition in Noreils [234] to distinguish between cooperative and non
cooperative systems. They describe cooperation as the scenario where
a team of robots operate together by performing individual tasks to
achieve a common goal and improving the performance of a single-
robot system7. Once an autonomous controller has been categorized
as cooperative, the knowledge level focuses on the robots team by
defining the awareness feature [235]. Awareness is the property of a
robot to have some kind of knowledge of the other members of the
team, i. e., the perception of other robots locations and actions. There
can be aware and unaware systems.

At the coordination level, there are different coordination modes
among the aware controllers. In this way, the literature [233, 236] gener-
ally defines coordination as a form of cooperation where the planned
actions for some robots take into account the executed actions of others
robots of the team, so there is a coherent synchronization among the
actions that allow to achieve complex tasks. It is important to note
that this can be cooperation without coordination. There are two kinds
of coordination (besides the non coordinated systems): strongly or
weakly coordinated. Strongly coordinated refers to a specific coor-
dination protocol that governs a stiff behaviour of the robots team.

6 Obviously, this is not a rule, because an agent can be created to control the cooperation
of multiple robots in a centralized manner.

7 Note the similarities with the cooperation definition described in section 2.2.



34 state of the art

Figure 2.4: Multi-robot systems taxonomy proposed by Iocchi et al. [233],
focusing on their cooperative features.

Otherwise, weak coordination implements a relaxed coordination
without a particular protocol.

The lowest level of this taxonomy is the organization level, which
refers to the classification of autonomous controllers based on the way
the decision making process is organized within the controller [156].
At this level, we can distinguish between centralized and distributed
approaches.

On one hand, centralized architectures name a robot as the central
agent of the team. The central agent has the global world-knowledge
of the environment as well as how every robot can interact with the
world, and it is in charge of the decision making process of the whole
team. Also, Iocchi et al. [233] split centralization in two kinds: strongly
or weakly centralized. A controller is strongly centralized when the
central agent remains the same during the mission duration, and
weakly centralized when more than one robot in the team can become
the central agent at any time during the mission duration.

Caloud et al. [237] present the GOFER controller, a typical central-
ized architecture, in which a group of mobile robots are managed
from a central task planner, a motion planner and a scheduler. These
planners have the world-knowledge of the environment and every
robot in the team. Tang and Parker [238] describe the Automated
Synthesis of Multi-robot Task solutions through software Reconfig-
uration (ASyMTRe), an architecture to synthesize valid and efficient
multi-robot behaviours through the mapping of control schemas to
manage a network of robots and accomplish a global task. The de-
cision making system of ASyMTRe is centralized, and it is used to
reconfigure the network. They demonstrate the performance of their
approach in multi-robot transportation and box pushing problems.



2.3 autonomous controllers for multi-robot cooperation 35

Also, Milutinovi and Lima [239] describe a central controller which
computes partial differential equations that describes the evolution
of a team of robots under uncertain and dynamic environments. This
central controller sends commands for task execution, task cancellation
or task switching to every robot. Mas and Kitts [240] propose a frame-
work for multi-robot formation control methods. This framework can
be modelled as a centralized as well as a decentralized approach, and
it is based on clustering techniques to control the motion of mobile
multi-robot systems.

On the other hand, distributed architectures do not have a central
node and the decision making process is distributed among all the
team members. An example of this approach is the ALLIANCE ar-
chitecture [241], a behaviour-based distributed architecture where a
multi-robot team cooperates to perform missions based on indepen-
dent tasks. Each robot can sense with some probability the effect of
their own actions and the actions of other team members through
perception and explicit broadcast communications. Then, each robot
selects its own tasks, considering that those tasks are aligned for the
benefit of the whole team. ALLIANCE uses motivational behaviours
to allow robot team members to perform tasks only as long as the task
demonstrated a significant advance toward the team’s goal.

An architecture that follows a distributed decision making process
is the High-level Distributed DecisioN (HiDDeN) [242], which is a dis-
tributed deliberative architecture that manages the execution of a
hierarchical plan for a multiple robot team in a specific air–sea sce-
nario. The hierarchical plan is distributed for its execution among the
supervisor of the robots. Each robot has its own supervisor, which
contains the robots actions and synchronization tasks with the oth-
ers. Besides, the supervisors include a hierarchical repair process to
provide fault tolerance to the system. Both hierarchical plan and re-
pair processes are instantiated as hierarchical task networks [243], a
common planning approach in cooperative architectures.

Despite the taxonomy depicted above, many architectures in the
literature do not conform to a strict paradigm dichotomy, i. e., many
architectures combine a distributed low-level decision process along
with a centralized high-level deliberative system. These are called as
hybrid architectures, and their fundamental objective is to combine
local control with higher-level control to achieve both robustness
and the ability to influence the entire team’s actions through global
shared goals. An example of hybrid architecture is the hierarchical
architecture. The hierarchical architectures use to follow the leader-
follower paradigm, where there can be various central nodes which
control the decision making process of different sub-teams of robots,
which in turn can control yet another groups of robots, and so forth,
down to the lowest robot.



36 state of the art

The work of Parker et al. [244] describes a cooperative architecture
for the navigation assistance task. Here, the leaders are sensor-rich
robots modelled to assist in the navigation of sensor-limited robots
(followers) which do not have on-board capabilities for obstacle avoid-
ance or localization. Other example is the CoT-ReX [245] controller,
which is a hybrid architecture adapted to the problem of underwater
detection and localization. It uses AUVs to gather information about
the targets locations while the Autonomous Surface Vehicle (ASV) acts
as a communication hub among all the AUVs. CoT-ReX has been built
under the T-REX system for the planning and execution control of the
mission.

2.4 summary

We started talking about the existing literature in discrete optimiza-
tion problems and algorithms applied in robotics. In this first sec-
tion, we described the nature of the discrete optimization and two
of the most studies categories of optimization problems: combinato-
rial and proximity & visibility problems. We also talked about the
NP-Completeness theory introduced in 1971 by Stephen Cook, and
the evolved techniques since then, and we continued by describing
polynomial time algorithms computing sub-optimal solutions to NP-
Complete problems. In particular, we provided a detailed description
of the combinatorial and proximity & visibility problems studied in
this PhD: the NNS, the SCP and the TSP. We also mentioned some of
their most common generalizations as well as existing algorithms to
compute approximate solutions.

In a second section, we began talking about the evolution and the
reasons of the expansion of multi-robot systems. We described the
meaning embraced by the community for robotic cooperation, which
erased from the collective behaviour concept. Then, we emphasized
about the explosion of heterogeneous cooperative multi-robot systems
in the last decade, and proposed a novel taxonomy for these systems.
Furthermore, we provided a detailed description of simple and mul-
tiple UGV-UAV systems, because these have been the configurations
studied in this PhD.

Finally, in the last section, we talked about the high-level frameworks
designed to manage mobile robotic systems, known as autonomous
controllers. We began with a brief historical introduction to these
frameworks, then talked about the main elements that form them, i. e.,
deliberation and reactivity. We continued talking about the taxonomy
of these systems from a single-agent perspective. And finally, we gave
a brief overview of cooperative autonomous controllers, and described
a well-known taxonomy in the literature proposed to classify different
kinds of cooperation frameworks.



Part II

T H E R E S E A R C H S T U D I E S

The exploration and observation of the environment repre-
sent a fundamental part of the scientific method. Then, an
experimental stage elaborates the appropriate experiments
and evaluates the obtained outcomes. In computer science,
these experiments usually are embodied by algorithms,
sequences of operations achieving computational solutions
for the observed problems.





3
A C O O P E R AT I V E S I M P L E U G V- UAV PAT H
P L A N N I N G A L G O R I T H M F O R T H E E X P L O R AT I O N
P R O B L E M

As we have discussed, heterogeneous simple UGV-UAV systems rep-
resent a vibrant research topic for cooperative exploration. Hence,
encouraged by the future of cooperative UGV-UAV applications, such
as the Mars 2020 Mission1, we created a cooperative UGV-UAV path
planning algorithm which exploits a UGV-UAV cooperation paradigm
to tackle a particular exploration problem.

The existing literature shows a broad diversity of cooperative UGV-
UAV exploration systems, but neither are conceived for high-level
autonomous explorations (were both UGV and UAV are fully au-
tonomous systems) nor are devised for particular exploration prob-
lems. In the next section we present a novel exploration problem which
can be the basis of complex exploration problems. Then, we describe
the cooperative path planning algorithm to solve the exploration prob-
lem. This algorithm implements a UGV-UAV cooperation paradigm
by executing an ordered set of computational stages. In section 3.2 we
provide an exhaustive description of the R2 path planning algorithm
by explaining its different stages. Then, we present the extension to R3

exploration problems, and also, the modifications to build the equiv-
alent R3 path planning algorithm. Finally, we provide an extensive
experimental evaluation to characterize the path planning algorithm
and the implications of the extension to three-dimensions.

3.1 the exploration problem

The exploration problem that we propose it is formally named as
the Energy Constrained UAV and Charging Station UGV Routing
Problem (ECU-CSURP), and it is defined with the following constraints:

(i) An exploration area modelled as an R2 Euclidean space.

(ii) A set of target points which has to be visited.

(iii) A distance constraint where at least one target point is out of
the boundaries of the initial UAV energy constraint.

(iv) An heterogeneous simple UGV-UAV system in which both have
been modelled as Dubins vehicles [247], which are vehicles with
just a single constraint: forward movement at a constant speed.

1 We recommend the reader to watch the keynote given by Dr. Mimi Aung in Caltech
in 2015 [246].

39



40 a cooperative simple ugv-uav path planning algorithm

Figure 3.1: An ECU-CSURP instance where target points (ti, ti+1, ti+2, ..., tn ∈
T) and a home location (V0 ∈ V) are distributed around a R2

Euclidean space. R denotes the farthest distance the UAV can
travel considering a return flight to the take-off point, and a0 ∈ A
is the area initially covered by V0. Note the distance constraint is
satisfied with d(V0, ti) > R.

(v) A UAV energy constraint.

(vi) A home location where both systems start and end the explo-
ration.

The objective of the ECU-CSURP is to find a cooperative routing
for the simple UGV-UAV system to allow the UAV to visit every
target point while trying to minimize the overall travelling distance.
Figure 3.1 shows an ECU-CSURP instance with a graphical representa-
tion of the problem constraints2. We model the R2 Euclidean space as
an area where the distance travelled by both robotic systems is directly
proportional to the time spent and the energy consumed in a trip.
Therefore, the shorter the distance travelled, the shorter the time spent
and the lower the energy consumed, and vice versa. Furthermore, the
UAV energy constraint is modelled as the maximum distance the UAV
can travel with a fully charged battery. Let Vuav be the UAV’s constant
velocity and ttrip the UAV’s flight time computed in a trip with a fully
charged battery, where dmax = (Vuav ∗ ttrip). Thus, the farthest distance
the UAV can travel ensuring a return flight to the take off point is
R = dmax/2 (see Figure 3.1). Also, we assume that the UGV does not
have energy constraints, so it has enough energy resources to complete
the exploration mission.

Let T denote the set of targets points {t1, ..., tn} where a target
ti ∈ T for i = 1, ..., n, and V denote the set of charging stops, also
called as vertices, {v0, ..., vm} where a vertex vj ∈ V for j = 0, ..., m

2 We will rigorously follow this ECU-CSURP instance to explain every stage of the
algorithm.



3.2 the terra algorithm for R2
euclidean spaces 41

(see Figure 3.2). Let v0 ∈ V be the home location and let a UGV’s
path be denoted as a tuple {v0, ..., vm−1, vm, v0}. Then, let the distance
constraint be represented as {t ∈ T : d(V0, t) > R} 6= ∅. Let A denote
the set of areas {a0, ..., am} where an area aj ∈ A (taking R as the
radius) represents the set of covered target points {t1, ..., tn} by vj ∈ V.
Let fvi ,vj represent the travel cost as the distance travelled by the UGV
to travel from vi ∈ V to vj ∈ V. Let S be the set of UAV sub-tours
S = {s1, ..., sk}. Let a UAV sub-tour si ∈ S be denoted as a pattern
{vj, ti, ti+1, ..., tp, vj}where vj ∈ V and ti ∈ T for i = 1, ..., p. Note that a
UAV sub-tour si ∈ S could have intermediate visits to the same vj ∈ V,
e.g. {vj, ti, vj, ti+1, vj}, which means the UAV needs an intermediate
charging stop on the UGV before to continue the exploration. Let gvj,ti

or gtj,ti denote the travel cost as the distance travelled by the UAV to
travel from the vertex vj ∈ V or the target tj ∈ T to ti ∈ T. Hence,
let Fugv denote the UGV’s travelling distance and let Fuav denote the
UAV’s travelling distance. Then, let Ftotal denote the total travelling
distance of the simple UGV-UAV system. The ECU-CSURP goals are
summarized in the following objective functions (3.1-3.3):

minimize→ Fugv =
m−1

∑
i=0

fvi,i+1 + fvm,0 (3.1)

minimize→ Fuav =
m

∑
j=0,
i=1

[
gvj,ti +

(
p−1

∑
i=1

(gti ,vj + gvj,ti+1) ∗ xi+

+ gti,i+1 ∗ xi

)
+ gtp,vj

]
(3.2)

minimize→ Ftotal = Fugv + Fuav (3.3)

Where xi is a binary variable which takes a value 1 if there is an
intermediate charging stop from the target ti ∈ T to the vertex vj ∈ V,
and 0 otherwise. The objective function 3.1 aims to minimize the
UGV’s travelling distance to accomplish its path. The objective function
3.2 aims to minimize the UAV’s travelling distance to accomplish
every sub-tour. And, finally, the objective function 3.3 formulates the
travelling distance of the heterogeneous simple UGV-UAV system.

3.2 the terra algorithm for R2
euclidean spaces

The cooperative path planning algorithm implemented to solve the
ECU-CSURP is formally named as cooperaTive ExploRation Routing
Algorithm (TERRA) [164]. Figure 3.2 shows a graphical representation
of an ECU-CSURP instance, displaying the main elements that TERRA
will consider to minimize the objective functions 3.1-3.3.

TERRA exploits a particular cooperation synergy between the UGV
and the UAV, which represents the interactions between the robot



42 a cooperative simple ugv-uav path planning algorithm

Figure 3.2: A TERRA representation of the ECU-CSURP instance shown in
Figure 3.1. There are placed in a R2 Euclidean space (X,Y): a set
of target points (ti, ti+1, ti+2, tn ∈ T), a possible set of vertices
(vj, vj+1, vm ∈ V), a set of areas (a0, aj, aj+1, am ∈ A) for each
v ∈ V and a home location (V0 ∈ V). The arrow is the farthest
distance R the UAV can travel.

systems to overcome a common goal. Here, the UGV is a moving
charging station which carries the UAV through charging stops from
where the UAV can reach the target points. The UAV can recharge
its battery on the on-board UGV charging station while the UGV is
at a charging stop. Each charging stop is linked to a subset of target
points, so on each subset, the UAV plans a route always considering
the possibility to fly back to the UGV for recharging and avoid run
out of energy in the next subset of target points. Once the UAV has
achieved a subset of target points, it flies back to the UGV. Then,
the UGV carries the UAV to the next planned charging stop to visit
the associated subset of target points. The exploration problem is
completed when every target point has been visited and both systems
reach the home location.

Our algorithm is split up in an ordered sequence of five stages, and
each stage has been properly addressed in the next five sub-sections
respectively. The next sub-section or first stage presents a Voronoi
search method to find a set of vertices aiming to minimize objective
function 3.1. On the second stage, a method is depicted to reduce the
cardinality of the set of vertices an so, minimize the objective function
3.1. The third stage is based on reducing the R2 Euclidean distance
among the vertices and so, keep minimizing the objective function 3.1.
The fourth stage3 computes the sTSP to find a sub-optimal path for the
UGV and minimize the objective function 3.1. Finally, the fifth stage

3 The sTSP is the symmetric TSP explained in subsection 2.1.3.



3.2 the terra algorithm for R2
euclidean spaces 43

computes the sTSP to find a sub-optimal path for the UAV on every
sub-tour and minimize the objective functions 3.2 and 3.3.

3.2.1 A Voronoi’s search

The TERRA’s first stage implements a Voronoi’s search method for
placing intermediate charging stops for the UGV, so the UAV can reach
the target points without running out of energy. The computational Charging stops are

also named as
vertices.

method follows a similar approach to the Preparata and Shamos’s
method [40] (see subsection 2.1.1) to compute the NNS, by partitioning
the space into regions computing Voronoi tessellations (see Figure 3.3).
Nevertheless, the goal in our search method is to find a set of Voronoi’s
vertices vj ∈ V, so that gv0,ti = fv0,vj + gvj,ti and whose areas aj ∈ A
cover the whole set of target points.

Figure 3.3: First stage of TERRA for the ECU-CSURP instance shown in
Figure 3.1. Every target point ti is covered by at least one vertex
vj. Note that the home location v0 is considered as an input, but
no area encompasses it because it does not cover any target point.

The pseudo code of the Voronoi’s search method implemented in
TERRA is shown in Algorithm 2. The inputs are the set of target points
T and the farthest distance R the UAV can travel. In the following we
provide a detailed description of the functions that form this method:

- Voronoi (line 17): is the voronoi function4 integrated in the MAT-
LAB computational geometry package. It computes a Voronoi
tessellation with the Voronoi points (Vvpoints) given as input. The
output is a set of vertices which represent the called Voronoi
vertices (Vvertices) (v1,v2, v3 and v4 in Figure 3.3).

4 https://es.mathworks.com/help/matlab/ref/voronoi.html



44 a cooperative simple ugv-uav path planning algorithm

- NearestVertex (line 29): it computes the distance between each
t ∈ Tnc and every v ∈ Vvertices. Then, it gives as output the nearest
v of each t.

- UnionSegment (line 14): it computes the union segment (v̄ in
Figure 3.3) formed by the two vertices in Vvpoints (only when it
complies the equality in line 13). A vertex corresponds to the
latest remaining target point in Tnc and the other to its nearest
vertex in Vnears (union in line 31).

- JunctionPoint (line 15): it computes the junction point between
the Linear Equation traced by the segment (v̄ in Figure 3.3)
and the Equation of the Circle of the latest target point (t1 in
Figure 3.3) following the Pythagorean Theorem. Thus, it solves
the following system of equations:

X− x1

x2 − x1
=

Y− y1

y2 − y1

(X− x1)
2 − (Y− y1)

2 = R2

 (3.4)

where (x1, y1) and (x2, y2) are the Cartesian Coordinates of the
latest remaining target point in Tnc and its nearest vertex in Vnears

(t1 and v1 in Figure 3.3). It returns the junction point (X, Y) as a
false Voronoi vertex (Vdummy in Figure 3.3) required to cover the
target point.

- ComputeAreas (line 33): it computes the set of areas {a0, ..., am} ∈
A where aj = {t1, ..., tn}.

The algorithm performs iterative Voronoi tessellations covering the
target points in Tnc. Sometimes, the algorithm detects that there are not
enough Vvpoints (condition in line 13) to compute a Voronoi tessellation,
i. e., there is only one isolated target point remaining to be covered
and its nearest vertex. In this situation, the algorithm generates a false
Voronoi vertex which guarantees the coverage of the isolated target
point (union in line 19).

The outputs are a set of Voronoi’s vertices (also called as vertices or
charging stops) V (Equation 3.5) and their areas A containing the set
of target points (Equation 3.6). At this point, every target point in T
has been covered by A.

Voronoi’s Search(T,R)→ {v0, ..., vm} ∈ V, {a0, ..., am} ∈ A (3.5)

aj ∈ A← {t1, ..., tn} (3.6)



3.2 the terra algorithm for R2
euclidean spaces 45

Algorithm 2 Voronoi’s search method

1: Procedure VoronoiSearch(T, R)
2: {Tnc: set of target points not covered yet}
3: {Vnears: set of nearest vertices for every t ∈ Tnc}
4: {Vvertices: set of Voronoi vertices }
5: {Vvpoints: set of Voronoi points }
6: {vdummy: false Voronoi vertex to cover an isolated target point }
7: {se: union segment between a target point and a vertex}
8: Tnc ← T
9: V, Vvertices, Vnears ← ∅

10: Vvpoints ← Tnc

11: while Tnc 6= ∅ do
12: vdummy ← ∅
13: if

∣∣Vvpoints
∣∣ == 2 then

14: se ← UnionSegment(Vvpoints)

15: vdummy ← JunctionPoint(se, R, Tnc)

16: else
17: Vvertices ← Voronoi(Vvpoints)

18: end if
19: Vvertices ← Vvertices

⋃
vdummy

20: for t ∈ Tnc do
21: for v ∈ Vvertices do
22: if distance(t, v) < R then
23: Tnc ← Tnc \ t
24: V ← V

⋃
v

25: end if
26: end for
27: end for
28: for t ∈ Tnc do
29: Vnears ← Vnears

⋃
NearestVertex(t, Vvertices)

30: end for
31: Vvpoints = Tnc

⋃
Vnears

32: end while
33: A← ComputeAreas(V, R)
34: return V, A
35: End procedure

3.2.2 A combinatorial optimization algorithm

The second stage aims to find a minimum set of vertices whose areas
guarantee full covering of the set of target points (see Figure 3.4). In
computer science this is called the HSP, which is a generalization of
the SCP commented in subsection 2.1.2. It is modelled as a bipartite
graph where the vertices vj ∈ V are represented on the left side, the
universe is represented by the target points ti ∈ T on the right side,



46 a cooperative simple ugv-uav path planning algorithm

Figure 3.4: TERRA’s second stage for the ECU-CSURP instance shown in
Figure 3.1. The minimum set of vertices V′ has been found to
cover all the target points ti ∈ T.

and the vertices aj ∈ A representing the inclusion of elements in sets.
The task is to find a minimum cardinality subset of vj ∈ V whose
aj ∈ A cover every ti ∈ T.

The inputs are the vertices in V and the areas in A including the set
of target points T. Figure 3.3 shows how TERRA realizes that v2 (whose
area a2 covers {t2, t4}) can be deleted from the set of vertices V because
v3 already covers {t2, t3, t4}, and thus, the cardinality is optimized, as
Figure 3.4 shows. Therefore, the outputs are a minimum set of vertices
V ′ (Equation 3.7) and their respective areas A′ (Equation 3.8).

HittingSet(V,A)→ {v0, ..., vm} ∈ V ′, {a0, ..., am} ∈ A′ (3.7)

aj ∈ A′ ← {t1, ..., tn} (3.8)

3.2.3 A gravitational optimization algorithm

The third stage aims to minimize Fugv through the Fuav increment due
to the following assumption: the UGV’s motion speed is expected to
be much slower than the UAV’s motion speed in general explorations,
i. e., Vugv << Vuav. Consequently, Fugv minimization will have higher
impact than Fuav from a time perspective. Thus, given the areas aj ∈ A′,
the farthest distance R the UAV can travel, the vertices vj ∈ V ′ and a
gravity point Gp, the objective is to find a set of vertices pj ∈ P where
d(pj, Gp) < d(vj, Gp) ∀ pj ∈ P and the constraint gpj,ti ≤ R ∀ ti ∈ aj ∈
A′, pj ∈ P is satisfied.

We developed a novel algorithm which places a gravity point Gp

in the exploration area, and then, attracts the vertices vj ∈ V ′ to it by
creating new vertices pj ∈ P. The inputs are the farthest distance R



3.2 the terra algorithm for R2
euclidean spaces 47

(a) Computing pj ∈ P with the gravita-
tional algorithm.

(b) Replacing pj ∈ P with vj ∈ V′′ with
the gravitational algorithm.

Figure 3.5: TERRA’s third stage for the ECU-CSURP instance shown in Fig-
ure 3.1. In this instance, the solution selected is the one provided
by the mean center (MC). The coverage areas c ∈ C represent the
maximum distance to replace each vertex vj with pj so that, the
following constraint is satisfied: gpj ,ti ≤ R ∀ ti ∈ aj ∈ A′, pj ∈ P.

the UAV can travel, the gravity point Gp, and the set of vertices V ′

and areas A′ solved in the previous stage. On each iteration, TERRA
computes one solution without applying a gravity point and three
gravity point solutions (Gp = {XC, HC, MC}), then, it chooses the
best from all four. The three gravity points are defined as follows:

1. The mean center (XC): mean of the x-axis and y-axis of the target
points.

2. The home location (HC): home location point of the ECU-CSURP
instance.

3. The median center (MC): median of the x-axis and y-axis of the
target points.

Algorithm 3 shows the pseudo code of the gravitational algorithm
implemented in TERRA. The following functions summarize the algo-
rithm’s behaviour:

- GetArea (line 7): it obtains the target points covered by v.

- UnionSegment (line 8): it computes the union segment (v̄j ∈ V̄
in Figure 3.5) between the vertex (vj ∈ V ′ in Figure 3.5a) and the
Gp considered.

- JunctionPoint (line 10): it builds the system of equations defined
in the first stage (Equation 4.39), where (x1, y1) and (x2, y2) are
the Cartesian Coordinates of the target point tc (coverage area
c ∈ C in Figure 3.5a) and its covering vertex v. It returns a



48 a cooperative simple ugv-uav path planning algorithm

Algorithm 3 Gravitational Optimization Algorithm

1: Procedure GravitationalOptimization(A′, R, V ′, Gp)
2: {av: set of target points covered by v}
3: {se: segment traced from v to Gp}
4: {P: set of candidate junction points}
5: V ′′ ← ∅
6: for v ∈ V ′ do
7: av ← GetArea(A′, v)
8: se ← UnionSegment(v

⋃
Gp)

9: for tc ∈ av do
10: P← P

⋃
JunctionPoint(se, R, tc)

11: end for
12: V ′′ ← V ′′

⋃
GetMin(P, Gp)

13: end for
14: return V ′′

15: End procedure

candidate junction point (pj ∈ P in Figure 3.5a) to replace the
vertex vj ∈ V.

- GetMin (line 12): it computes the distance between Gp and every
candidate junction point p ∈ P. Then, it gives as output the
nearest candidate to replace the vertex (vj ∈ V ′′ in Figure 3.5b).

The gravitational algorithm computes finite iterations until it finds
a candidate junction point to replace every vertex. The output is a set
of replaced vertices V ′′ (Equation 3.9).

GravitionalAlgorithm(A’,R,V’,Gp)→ {v0, ..., vm} ∈ V ′′ (3.9)

3.2.4 A genetic algorithm for the UGV’s path

The fourth stage aims to compute the shortest UGV’s directed path in
order to minimize Ftotal . This problem is the well-known TSP presented
in subsection 2.1.3. Given a set of vertices V ′′ ← {v0, ..., vm} and
the distances between each pair of vertices fvi ,vj ∀ (vi, vj ∈ V ′′), the
task is to find the shortest possible route that visits each vertex and
returns to the home location v0. Particularly, we model the symmetric
generalization sTSP, where the distance fvi ,vj between the vertex vi and
the vertex vj follows fvi ,vj = fvj,vi .

We developed a genetic algorithm which takes as input the set of
vertices V ′′ computed in the previous stage. Our algorithm is built
under three main evolutionary steps. The first step is a selection mech-
anism where a portion of the existing population is selected to breed
a new generation. It applies the tournament selection method [248] to



3.2 the terra algorithm for R2
euclidean spaces 49

repeatedly select the best individual of a randomly chosen subset. The
second step implements an elitist selection process in which the best
individuals from the current population are carried over to the next,
unaltered. The tournament and elitist selections methods ensure a
generational process which keeps the population size constant on each
generation. The third step produces the new generation from those
selected in the tournament selection through the combination of the
genetic operators: mutation and crossover. The mutation operator uses
flipping, swapping and sliding techniques to create new chromosomes.
The crossover operators applied are: Order Crossover, Cycle Crossover
and Order Base Crossover. In order to properly adjust the genetic al-
gorithm to ECU-CSURP instances, we performed a tuning experiment
to select an appropriate parameter configuration (see section 3.4). The
output is an ordered path (Equation 3.10) minimizing the objective
function 3.1 (see Figure 3.6).

GeneticAlgorithm(V”)→ {v0, vj, vj+1, ..., vm, v0} ∈ V ′′′ (3.10)

3.2.5 A search algorithm for the UAV’s path

The fifth stage aims to compute the shortest UAV’s directed path
among the multiple UAV sub-tours in order to minimize Ftotal . This
problem involves multiple symmetric TSPs. Given a set of areas A′,
where each area aj ∈ A′ is an unordered set of target points {t1, ..., tn},
the farthest distance R the UAV can travel, a set of vertices V ′′, and
the distances gvj,ti ∀ vj ∈ V ′′, ti ∈ aj ∈ A′ and gtj,ti ∀ tj, ti ∈ aj ∈ A′;
the objective is to find the multiple shortest sub-tours si ∈ S which
visits each target point ti ∈ aj ∈ A′ and returns to the linked charging
stop vj ∈ V ′′.

Figure 3.6: Fourth and fifth stage of TERRA for the ECU-CSURP instance
shown in Figure 3.1. The fourth stage gives as output the UGV’s
directed path, and the fifth stage gives the UAV’s directed path.



50 a cooperative simple ugv-uav path planning algorithm

We developed a search algorithm similar to the A* algorithm [249].
The inputs are the set of areas A′ computed in the second stage, the
farthest distance R and the set of vertices V ′′ computed in third stage.
As well as A*, it uses the evaluation function f = g + h, where the
cost function g is the accumulated distance to reach a target point and
the heuristic function h represents the remaining target points to visit.

Algorithm 4 The search algorithm

1: Procedure searchRouting(A′,V ′′,R)
2: {av: set of target points covered by v}
3: {s: a UAV sub-tour}
4: {open, closed: list of nodes to be visited and already visited nodes}
5: {pstart: starting node or charging stop of each sub-tour}
6: {pcurr: current node of the search graph}
7: {pneighbours: neighbour nodes list of pcurr}
8: for v ∈ V ′′ do
9: av ← GetArea(A′, v)

10: av ← av
⋃

v
11: coord(pstart)← v
12: d(pstart), g(pstart)← 0
13: h(pstart)← |av| − 1
14: f (pstart) = g(pstart) + h(pstart)

15: parent(pstart)← pstart

16: closed, open← ∅
17: open.Push(pstart)

18: while open 6= ∅ do
19: pcurr ← open.Pop()
20: if coord(pcurr) == v and h(pcurr) == 0 then
21: return s← GetSubTour(pcurr)

22: end if
23: closed.Push(pcurr)

24: pneighbours ← ExpandGraph(pcurr, pstart, R, av)

25: for pnbr ∈ pneighbours do
26: if pnbr /∈ closed then
27: if pnbr /∈ open then
28: g(pnbr)← In f
29: parent(pnbr)← ∅
30: end if
31: open← UpdateNode(open, pcurr, pnbr)

32: end if
33: end for
34: end while
35: return S← S

⋃
s

36: end for
37: return S
38: End procedure



3.2 the terra algorithm for R2
euclidean spaces 51

Algorithm 4 shows the pseudo code of the search algorithm. It
computes finite sub-tours s ∈ S for each v ∈ V ′′ looking for the
shortest directed path. Each sub-tour denotes the starting charging
stop v as the pstart node. A node is an object containing the following
information: the Cartesian Coordinates (coord) of the target point in av

or the vertex in V ′′, its accumulated distance from the last charging
stop (d), its cost, heuristic and evaluation functions (g, h, t) and its
parent node (parent). The following functions help to understand it:

- getSubTour (line 21): it recursively obtains the parent nodes of
the search graph starting from pcurr.

- ExpandGraph (line 24, detailed in Algorithm 5): it integrates the
UAV energy constraint R into the searching process.

Algorithm 5 Expanding the graph looking for neighbours

1: Procedure ExpandGraph(pcurr, pstart, R, av)
2: {pnbr: pcurr neighbour node expanded in the graph}
3: {n: candidate to neighbour node}
4: pneighbours ← ∅
5: for n ∈ av do
6: if coord(pcurr) 6= n and not relative(pcurr, n) then
7: if coord(pcurr) == coord(pstart) then
8: d← distance(coord(pcurr), n)
9: else

10: d← d(pcurr) + distance(coord(pcurr), n)
11: end if
12: dstart ← distance(coord(pstart), n)
13: if R ∗ 2 >= d + dstart then
14: if n == coord(pstart) then
15: h← h(pcurr)

16: else
17: h← h(pcurr)− 1
18: end if
19: coord(pnbr)← n
20: parent(pnbr)← pcurr

21: d(pnbr)← d
22: h(pnbr)← h
23: g(pnbr)← pcurr.g + distance(coord(pcurr), n)
24: f (pnbr)← g(pnbr) + h(pnbr)

25: pneighbours.Push(pnbr)

26: end if
27: end if
28: end for
29: return pneighbours
30: End procedure



52 a cooperative simple ugv-uav path planning algorithm

At first, it checks if n ∈ av has already been visited (a node can
be visited only once in a route) (line 6). Then, if coord(pcurr) is
equal to coord(pstart) (line 7), it means that the route does an
intermediate charging stop and it is starting again to visit the
remaining target points, i.e., the accumulated distance from the
last charging stop (d) has to be equal to the distance required to
visit the neighbour n. If not, it accumulates the travelling distance
to the neighbour n. Then, it checks that the sum of the distance
required to visit n plus the distance required from n to return to
the charging station pstart (d + dstart) is less than the maximum
distance the UAV can travel (dmax = R ∗ 2) ensuring the return
to the charging station (line 13). If not, n is not a valid neighbour
and it is not included into the search graph because the UAV
would run out of energy following that route. Otherwise, the
node n is included into the neighbours list pneighbours. Note that
pstart does not compute as a real target point in h (line 14).

- UpdateNode (line 31, detailed in Algorithm 6): it checks if the
new distance (d + g(pnbr)) computed to reach pnbr node from
the pcurr parent is shorter than the distance (g(pnbr)) previ-
ously computed to reach pnbr from another parent node (line
4). Thereupon, it updates the travel cost g, parent and the eval-
uation function f, and updates the node in the open nodes list.

Algorithm 6 Updating the selected node

1: Procedure UpdateNode(open, pcurr, pnbr)
2: {pnbr: pcurr neighbour node}
3: d← distance(coord(pcurr), coord(pnbr))

4: if g(pcurr) + d < g(pnbr) then
5: g(pnbr)← g(pcurr) + d
6: parent(pnbr) = pcurr

7: if pnbr ∈ open then
8: open.Remove(pnbr)

9: end if
10: f (pnbr)← g(pnbr) + h(pnbr)

11: open.Push(pnbr)

12: end if
13: return open
14: End procedure

For each v ∈ V ′′, our search algorithm returns an ordered set of
locations s ∈ S denoting a UAV sub-tour where the UAV’s travelling
distance has been minimized as Equation 3.11 shows.



3.3 extending to R3
euclidean spaces 53

Fs∈S(vj ∈ V ′′, ti ∈ aj ∈ A′) =

gvj,ti +

(
p−1

∑
i=1

gti ,vj ∗ xi + gvj,ti+1 ∗ xi + gti ,ti+1 ∗ xi

)
+ gtp,vj (3.11)

The output is a set of UAV sub-tours S (Equation 3.12) minimizing
the objective function 3.2 as in Equation 3.13 (see Figure 3.6).

SearchAlgorithm(A’,V”,R)→ {s1, ..., sk} ∈ S (3.12)

Fuav =
k

∑
i=1

Fsi∈S (3.13)

Finally, once Fugv and Fuav have been minimized, the objective func-
tion 3.3 is minimized and the ECU-CSURP is solved.

3.3 extending to R3
euclidean spaces

The TERRA algorithm presented in section 3.2 is designed for R2

exploration problems, which means that only flat terrains can be
considered. Also, it does not consider terrain obstacles, so, in practice,
the exploration area has to be a complete open and flat terrain. This
algorithm can be admissible for some scenarios in these ideal terrains
e. g., some industrial or urban areas. However, it is not suitable for
scenarios in cumbersome terrains e. g., high-hill or uneven areas, which
can also have terrains features, such as rocks or mountain ridges.

As we stated at the beginning of this chapter, our objective is to
design a cooperative simple UGV-UAV path planning algorithm for a
broad range of high-level explorations. Thus, we describe the exten-
sion of the exploration problem and TERRA to R3 Euclidean spaces in
the present section. Next sub-section describes the definition changes
of the problem formulation, and subsection 3.3.2 the TERRA corre-
sponding enhancements.

3.3.1 The exploration problem in R3

The ECU-CSURP stated in section 3.1 defines in its first constraint that
the exploration area has to be modelled as a R2 Euclidean space.
Extending the ECU-CSURP to R3 implies extending this constraint
to R3 Euclidean spaces. In particular, we constrain the R3 area to
be represented as a Digital Terrain Model (DTM), which is a well-
used 3D computer graphic representation of R3 Euclidean spaces.
A DTM represents the bare ground surface without any objects like
trees or buildings. Figure 3.7 shows an ECU-CSURP instance in a
DTM of the Mars surface. Specifically, it shows the central uplift of



54 a cooperative simple ugv-uav path planning algorithm

Figure 3.7: An ECU-CSURP instance where a set of target points t ∈ T and
a home location v0 ∈ V are distributed around a R3 Euclidean
space. This Euclidean space is represented as a real Mars DTM.
R denotes the farthest distance the UAV can travel considering a
return flight to the take-off point. The red area a0 is the area cov-
ered by the UAV from the home location. The distance constraint
is also satisfied with d(V0, ti) > R.

a 30-Km diameter crater in Noachis Terra5, captured by the High
Resolution Imaging Science Experiment (HiRISE) on board the Mars
Reconnaissance Orbiter. There, we can appreciate that the ECU-CSURP
constraints are met: (i) the exploration area is modelled as a R3 area
or DTM, (ii) a set of target points t ∈ T to be reached, (iii) a distance
constraint such that d(V0, ti) > R, (iv) a heterogeneous simple UGV-
UAV system, (v) a UAV energy constraint modelled as the coverage
area a0, and (vi) a home location V0 ∈ V where the UGV-UAV systems
starts and ends the exploration.

We use the DTM geometric formulation of Muñoz et al. [250], to
compute the objective functions 3.1-3.3 of ECU-CSURP. This formula-
tion define how to compute three-dimensional distances and the slope
of each node in order to obtain safer routes. They define a method
to compute the approximate distance travelled by a robot through
adjacent (or not adjacent) three-dimensional nodes. For that, they in-
terpolate the elevation of nodes that are inside of the rectangular cell.
Here, a node is a coordinate tuple (xp, yp, zp), where zp is the elevation
obtained from the DTM. We use this notation to represent the target
points, charging stops, UGV’s path and UAV’s path in TERRA.

Muñoz et al. [250] model a DTM as a grid of rectangular cells, where
each cell is formed by four adjacent nodes in the map. These four
nodes along with a central point of the cell form four triangles. The
slope of each triangular plane determines the slope of each node at
the rectangular cell. This model expresses this computed slope and

5 Its identification in the HiRISE database is: DTEED-030808-1535- 031230-1535-A01.



3.3 extending to R3
euclidean spaces 55

other terrain characteristics as a numerical value. This value indicates
the cost (estimated effort) required to cross an area of the map. We
use this cost to identify the following two kind of nodes:

- Legitimate nodes: those whose can be crossed by the UGV be-
cause the cost its lower than a given threshold, and represent a
feasible option for a charging stop.

- Illegitimate nodes: those whose cannot be crossed by the UGV
because the cost its higher than a given threshold.

3.3.2 Updating TERRA for R3

Once we extended the ECU-CSURP to R3 Euclidean spaces, we updated
TERRA to solve R3 problem instances [251]. On one hand, the updates
we devised for the five stages of R2 TERRA, could be summarized by
replacing the R2 coordinate tuple (xp, yp) by the R3 tuple (xp, yp, zp)

to every stage of the algorithm. Note that the stages based on combi-
natorial optimization problems (the second, fourth and fifth stages)
do not care about the dimensionality of the exploration area. However,
the Voronoi’s search and the gravitational optimization stages required
some updates. On the other hand, updating TERRA for R3 problem
instances is strictly related to compute three-dimensional paths for
the heterogeneous simple UGV-UAV system. Therefore, we integrated
the 3Dana algorithm [250] to compute the UGV’s three-dimensional
path, whereas for the UAV’s path, we defined a constant altitude. In
the following, we describe the changes of the the Voronoi’s search and
the gravitational optimization stages to upgrade to R3 scenarios, and
the new stage to compute the three-dimensional UGV’s path.

As the TERRA’s first stage, our Voronoi’s search method looks for
placing intermediate charging stops in the UGV’s path, so the UAV
can reach the target points without running out of energy. In R2

Euclidean spaces, the map is an open (without obstacles) and flat
terrain, so every point is a legit node (also called as legit vertex) to
be a charging stop, because the UGV can cross every point without
problems. Nevertheless, as we mentioned in the previous section, a
point may not be legit to be crossed by an UGV in DTMs. Therefore,
we updated our Voronoi’s search method as shows the pseudo code
in Algorithm 7. This algorithm has the following three main changes
referring to Algorithm 2:

1. The computed Voronoi vertices in the Voronoi function (line
19) are formed by legit vertices (Vlegit), unlegit vertices (Vunlegit)
and vertices which are out of the map boundaries. Then, this
distinction is mandatory in order to select legitimate vertices that
cover the target points, and the nearest vertices of each target
point not covered yet (line 33).



56 a cooperative simple ugv-uav path planning algorithm

2. The distance3D function (line 26) computes the three-dimensional
distance between a target point and a legit vertex using Pythago-
ras.

Algorithm 7 3D Voronoi’s search method

1: Procedure Voronoi3DSearch(T, R, Map)
2: {Map: cost map of the DTM}
3: {Tnc: set of target points not covered yet}
4: {Vnears: set of nearest vertices for every t ∈ Tnc}
5: {Vvertices: set of Voronoi vertices }
6: {Vlegit: set of Voronoi legit vertices }
7: {Vunlegit: set of Voronoi unlegit vertices }
8: {Vvpoints: set of Voronoi points }
9: {vdummy: false Voronoi vertex to cover an isolated target point }

10: {se: union segment between a target point and a vertex}
11: Tnc ← T
12: Vvpoints ← Tnc

13: V, Vvertices, Vnears, Vlegit, Vunlegit ← ∅
14: while Tnc 6= ∅ do
15: vdummy ← ∅
16: if

∣∣Vvpoints
∣∣ == 2 then

17: vdummy ← greenZoneSearch(Vvpoints, R, Map)
18: else
19: Vvertices ← Voronoi(Vvpoints)

20: Vlegit ← getLegits(Vvertices, Map)
21: Vunlegit ← getNoLegits(Vvertices, Map)
22: end if
23: Vlegit ← Vlegit

⋃
vdummy

24: for t ∈ Tnc do
25: for v ∈ Vlegit do
26: if distance3D(t, v) < R then
27: Tnc ← Tnc \ t
28: V ← V

⋃
v

29: end if
30: end for
31: end for
32: for t ∈ Tnc do
33: Vnears ← Vnears

⋃
NearestVertex(t, Vlegit, Vunlegit)

34: end for
35: Vvpoints = Tnc

⋃
Vnears

36: end while
37: A← ComputeAreas(V, R)
38: return V, A
39: End procedure



3.4 experimental evaluation 57

3. The greenZoneSearch function (line 17) computes the false Voronoi
vertex (vdummy) to cover an isolated target point. As well as
in Algorithm 2, it happens when the Voronoi function cannot
compute a feasible Voronoi tessellation with only two vertices.
The greenZoneSearch function roams around the target point in a
spiral mode from the outbounds delimited by R, aiming to find
a legit vertex inside the boundaries of the target point.

The introduction of legitimate and illegitimate vertices does not only
impact to the Voronoi’s search method, but also to the gravitational
optimization algorithm. In this way, Algorithm 3 is updated to detect if
the computed junction point is a legit or an unlegit vertex. That is, the
new algorithm works in a same way but computing the corresponding
R3 Euclidean functions. Furthermore, the JunctionPoint function (line
10 in Algorithm 3), includes an additional step where it checks if the
junction point is a legit or an unlegit vertex. In case of a legit vertex,
it keeps the execution. Otherwise, it searches a legit vertex into the
union segment (v̄j ∈ V̄ in Figure 3.5) between the vertex (vj ∈ V ′ in
Figure 3.5a) and the Gp considered.

Nevertheless, as we introduced in this sub-section, computing three-
dimensional UGV’s paths represents a significant enhancement of
the TERRA algorithm to solve R3 problem instances. However, we
do not compute the UAV’s three-dimensional path as well as other
physical constraints, such as wind speed or atmospheric density, for
two reasons: first, some of them imply an explosion in the problem
complexity and, second, dynamic constraints (as wind speed) cannot
easily modelled neither predicted to be exploited in off-line planning
(they are better suitable for on-line adaptation of the plan during
execution). Instead, we define a constant flight altitude for the UAV.

For the UGV’s three-dimensional path, we introduce an additional
stage after computing the TSP for the two-dimensional UGV’s path
(fourth stage). This new stage is the 3Dana algorithm [250], a path
planning algorithm developed to obtain safer routes based on heuris-
tic search over a DTM and/or a traversability cost map. The 3Dana
algorithm generates long term paths exploiting a DTM geometric
formulation without requiring a mechanical model of the robot. Fur-
thermore, it provides the capability of combining both traversability
cost maps and DTMs, so the paths generated are safer than the ones
obtained by exploiting representations combined into a single cost
map.

3.4 experimental evaluation

In this section we present the TERRA experimental evaluation for dif-
ferent randomly generated ECU-CSURP instances. Firstly, we assess
the TERRA performance to provide an accurate algorithm characteri-
zation in R2 Euclidean spaces. And secondly, we study the additional



58 a cooperative simple ugv-uav path planning algorithm

implications of executing TERRA in R3 Euclidean spaces. Appendix A
shows the map generation algorithm used to create random ECU-
CSURP (R2 and R3) instances, and the parameter tuning performed
to set up the genetic algorithm for a proper evaluation.

The algorithm has been implemented in MATLAB, and all the
experiments were carried out on a 2.6 GHz Intel Core i7 with 16 GB of
RAM under Windows 10. The results of the experiments are publicly
available on GitHub6. Additionally, Appendix B shows the TERRA
computational results in instances generated using the TSP library
TSPLib [252], and some additional statistical tests.

3.4.1 Characterizing TERRA in R2

The assessment of the algorithm has been focused in the trade-off
between the UGV’s travelling distance (objective function 3.1) and the
UAV’s travelling distance (objective function 3.2), and their impact
in the total travelling distance (objective function 3.3). We began by
evaluating the performance looking at the main parameter fluctuations
of the random map generator (see Appendix A). The main parameters
can be summarized as follows:

- N: number of target points.

- R: farthest distance the UAV can travel in km.

- δ: number of clusters, where a cluster is a group of closely located
target points.

We assumed N as a constant parameter during the experimental
evaluation because of its linear correlation with the objective function
3.3, i. e., a constant N increment will approximately get a constant Ftotal
increment. Therefore, we focused the TERRA assessment on the R and
δ parameters, and we performed two experiments: one experiment
to analyse the correlation between R and the objective function 3.3,
and other experiment to analyse the correlation between δ and the
objective function 3.3.

3.4.1.1 Overall TERRA performance

The objective is to analyse the performance over instances with differ-
ent R and δ values. As we mentioned above, N has been kept constant
being N = 16.

The experiment setting is based on nine parameters configurations
combining three different values of R = {1, 3, 9} and δ = {2, 4, 8}.
Each parameter configuration will be tested over five hundred random
ECU-CSURP instances. On each instance, TERRA will select the best of

6 https://github.com/FRopero/TERRA_Experiments



3.4 experimental evaluation 59

Figure 3.8: Results for the TERRA execution in nine different δ and R configu-
rations. Each configuration has been evaluated over five hundred
randomly generated maps. We can assert that there is a direct
correlation between R and Ftotal , and δ and Ftotal .

the four gravity point solutions in the third stage. Figure 3.8 shows the
experiment results in a box-plot matrix. δ (top x-axis) is the number
of clusters. R (left y-axis) is the farthest distance R the UAV can
travel in km. The parameters to evaluate (bottom x-axis) are: Fugv, Fuav,
Ratio = Fugv/Fuav and Ftotal . The parameter values (right y-axis) are
displayed as the travelling distance in km.

Firstly, we observe that the increment of R generates a significant in-
crement of Fuav mainly due to the gravitational optimization algorithm.
That is, the higher R, the higher is the attraction of the gravity point
(d(vj, Gp) in third stage) and the higher is the reduction of the distance
among the vertices and the gravity point (d(pj, Gp) in third stage),
which conducts to a Fuav increment and a Fugv decrement. Despite
of this Fugv decrement, the R increment building problem instances
leads to a Fugv increment due to the dispersion of the target points
locations on each cluster (Appendix A shows that the standard devi-
ation σ = a ∗ R, where a ∈ {0.5, 2}). That is, the higher R, the more
scatter are the target points on each cluster, which in turns conducts
to TERRA to require more vertices to cover the cluster and so, Fugv

is incremented. This Fugv increment slightly dominates over the Fugv

decrement because of the gravitational optimization algorithm. Due
to Ftotal = Fugv + Fuav, we can assert the following Lemma 3.4.1:

Lemma 3.4.1. There is a direct correlation between R and Ftotal .

Additionally, we performed One Way ANOVA [253] tests to demon-
strate the statistical significance of the Lemma 3.4.1. Please, refer to
Appendix B to observe that Table B.1 shows that every p-value is lower
than the significance level α = 0.05, which demonstrates the statistical
significance of the Lemma 3.4.1.



60 a cooperative simple ugv-uav path planning algorithm

Secondly, we observe that a δ decrement results in a Fugv decrement.
That is, the lower δ, the lower is the number of vertices and so, Fugv.
This effect dominates over the gravitational optimization algorithm
and it explains the Fugv decrement. Also, we can observe that Fuav

decreases with the δ decrement. This is because the search algorithm
computing the UAV’s path. Due to Ftotal = Fugv + Fuav, we can assert
the following Lemma 3.4.2:

Lemma 3.4.2. There is a direct correlation between δ and Ftotal .

As well, we driven One Way ANOVA tests to demonstrate the statis-
tical significance of the above Lemma 3.4.2. Please, refer to Appendix B
to observe that Table B.2 shows that every p-value is lower than the
significance level α = 0.05, which also demonstrates the statistical
significance of the Lemma 3.4.2.

3.4.1.2 Analysing gravitational effects

The objective is to assess Lemma 3.4.1 by evaluating the gravitational
optimization algorithm impact in the four computed solutions, i. e.,
the three gravitational solutions with three different gravity points
and the solution without applying a gravity point.

The experimental setting is based on four parameters configurations
in which R = {2, 4, 8, 16}. The rest of key parameters have been kept
constant in the experiment (δ = 1 and N = 6). Each configuration has
been tested over five hundred random problem instances. Figure 3.9
shows the experiment results split up into six plots. The top and
bottom x-axis is the farthest distance R the UAV can travel in km.
The top y-axis is the distance travelled in km. The bottom y-axis is
the time taken to cover the distance in hours. Each plot shows the
three TERRA solutions with the three gravity points and the TERRA
solution without a gravity point.

On the one hand, the three top plots represent the results of the
difference between the travelling distance of the solution without ap-
plying the gravitational optimization algorithm fugv, fuav and ftotal , and
the travelling distance of the three gravity solutions f (g)ugv, f (g)uav,
f (g)total where g ∈ Gp is the gravity point. Let Gp = {XC, HC, MC}
be the set of gravity points (see their definitions in subsection 3.2.3).
Then, the travelling distance deviation λ is computed as follows:

λugv = fugv − f (g)ugv∀g ∈ Gp (3.14)

λuav = fuav − f (g)uav∀g ∈ Gp (3.15)

λtotal = ftotal − f (g)total∀g ∈ Gp (3.16)

On the other hand, the three bottom plots represent a theoretical
computation (there are not considered real-world variables such as



3.4 experimental evaluation 61

Figure 3.9: Results for the TERRA execution in four different parameters
configurations with R = {2, 4, 8, 16}, δ = 1 and N = 6. Each
configuration has been evaluated over five hundred randomly
generated problem instances. We conclude that f (g)ugv optimiza-
tion will be more significant than f (g)uav optimization from a
time perspective.

the wind speed or terrain slope) of the time taken by the heteroge-
neous simple UGV-UAV system to cover the distances Fugv and Fuav,
respectively. Thus, we need to add to TERRA the motion speed pa-
rameters. We follow the assumption commented at the beginning of
subsection 3.2.3 (Vugv << Vuav), denoting Vugv = 0.13km/h (maximum
speed of the Mars Science Laboratory) as the UGV’s motion speed,
and Vuav = 30km/h (standard value) as the UAV’s motion speed. Also,
let tugv = fugv/Vugv, tuav = fuav/Vuav and ttotal = tugv + tuav denote
the time taken to accomplish the mission without computing a gravity
point. Let t(g)ugv, t(g)uav and t(g)total denote the time taken to accom-
plish the mission computing a gravity point g ∈ Gp. Then, the total
time deviation α is computed for each gravity point as follows:

αugv = tugv − t(g)ugv∀g ∈ Gp (3.17)

αuav = tuav − t(g)uav∀g ∈ Gp (3.18)

αtotal = ttotal − t(g)total∀g ∈ Gp (3.19)

From Figure 3.9, we can highlight three evidences. First, λugv and
αugv plots are in positive outcomes (top and bottom left plots). We
can observe that the three gravity point solutions f (g)ugv∀g ∈ Gp

always improve the results against the solution without applying any
gravity point fugv, i.e., f (g)ugv < fugv. Then, the higher R, the lower
is the distance among the junction points and the vertices (d(pj, Gp)

in Figure 3.5), and so, the greater is the efficiency of the gravitational
optimization algorithm.



62 a cooperative simple ugv-uav path planning algorithm

Second, λuav and αuav plots are in negative outcomes (top and
bottom middle plots). Here, we can observe the main drawback in the
trade-off between the UGV’s and UAV’s travelling distance. That is,
when δ = 1, the gravitational optimization algorithm computes the
maximum Fugv reduction by maximizing Fuav, as can be observed in
Figure 3.5b. Notwithstanding the Fuav maximization in λuav plot (it
almost reaches 30km with R = 16km), we observe in αuav plot that the
time difference among fuav and f (g)uav solutions is below 1h.

And third, λtotal and αtotal plots have different outcomes (top and
bottom right plots). λtotal is always in negative outcomes for every g ∈
Gp. That is because the λtotal results only have taken into account the
UGV’s and UAV’s travelling distance. Here, both f (g)ugv and f (g)uav

are computed with equal importance from a distance perspective.
Nevertheless, if we take the commented motion speed assumption
(Vugv << Vuav), we can see that the UGV’s motion speed (Vugv =

0.13km/h) is much slower than UAV’s motion speed (Vuav = 30km/h).
Then, we can ensure that the UGV will need more time to cover the
same distance than the UAV. Consequently, the f (g)ugv optimization
will be more significant than the f (g)uav optimization from a time
perspective. As we can see in αtotal plot, the results are always in
positive outcomes. Both plots show that the gravitation optimization
algorithm computes better solutions (in average) computing the MC
gravity point until R ≈ 12. These statements can be defined as follows:

λtotal(MC) > λtotal(g) ∀g ∈ {XC, HC}, R <= 12 (3.20)

αtotal(MC) < αtotal(g) ∀g ∈ {XC, HC}, R <= 12 (3.21)

Therefore, we can assert that R has a key impact on the TERRA
performance. In particular, the gravitational optimization algorithm
performance will always depend on R and the motion speed of the
heterogeneous simple UGV-UAV system. From a distance perspective,
the performance is lower as R increases, i. e., λtotal increases, because
the UGV’s travelling distance minimization is less significant than
the UAV’s travelling distance maximization. Nevertheless, from a
time perspective, the performance is higher as R increases, i. e., αtotal
decreases, because the UGV’s travelling time minimization is more
significant than the UAV’s travelling time maximization.

3.4.1.3 Analysing clustering effects

The objective is to analyse Lemma 3.4.2 by evaluating the search algo-
rithm presented in subsection 3.2.5, over different clustering settings.

This experiment consists of six parameters configurations in which
δ = {2, 4, 8, 16, 32, 64}. The rest of the key parameters have been kept
constant during the experimentation (R = 2 and N = 64). Each
configuration has been tested over five hundred random problem



3.4 experimental evaluation 63

instances. Figure 3.10 shows the experiment results. From left to
right, the plots represent Fugv, Fuav, Ftotal and ChargingStops for the
three gravity point solutions (XC, HC, MC) and the solution without
computing a gravity point. Each plot shows the TERRA solutions in
the three gravity point results and the results without a gravity point.

From Figure 3.10, we can highlight three evidences. First, the Fugv

plot shows that, the higher δ, the higher are fugv and f (g)ugv ∀ g ∈
Gp. In fact, the higher δ, the higher is the gravitational optimization
algorithm performance because it finds less constraints to compute
a junction point near to the gravity point (see subsection 3.2.3). This
explains why the f (g)ugv ∀ g ∈ Gp are slightly lower than fugv while
δ increases. Nevertheless, the higher δ, the higher is the number of
charging stops and so, the higher are fugv and f (g)ugv ∀ g ∈ Gp.

Figure 3.10: Results for the TERRA execution in six different ECU-CSURP
configurations with δ = {2, 4, 8, 16, 32, 64}, R = 2 and N =
64. Each configuration has been evaluated over five hundred
randomly generated maps. We demonstrate that between two
maps with the same key parameters but different δ, TERRA
generates a better solution to the map with lower δ.

Second, the Fuav plot shows that, the higher δ, the higher are fuav and
f (g)uav ∀ g ∈ Gp. This is because of the search algorithm performance,
i. e., the higher δ, the lower the probability to schedule a path with
intermediate charging stops. Also, we can appreciate two differences
among f (g)uav ∀ g ∈ Gp and fuav. On the one hand, the search
algorithm computes the maximum increment of f (g)uav ∀ g ∈ Gp, i.e.,
d(pj, Gp)∀ pj ∈ P in Figure 3.5a. Then, it needs to place the maximum
number of charging stops in the UAV sub-tours to accomplish them.



64 a cooperative simple ugv-uav path planning algorithm

As we can see in the Charging Stops plot, the number of charging stops
in f (g)uav ∀ g ∈ Gp (s(XC), s(HC), s(MC)) is always higher than fuav

(s). Also, we can see that this effect decreases as δ increases. On the
other hand, if any gravity point is applied, there is no fuav aggravation,
so the search algorithm has a greater performance.

The third and last evidence is related to the intermediate charging
stops number in the Charging Stops plot. Here, we can observe the
∆ = δ/R relation. We can assert that the search algorithm has a turning
point in ∆ = 2 . In ∆ 6 2, the algorithm performance is high because
δ is too low compared with the area covered by R. Then, the search
algorithm requires a large number of intermediate charging stops to
find a UAV sub-tour. In ∆ > 2, the performance decreases because δ is
too high compared with R, and so, the algorithm has less probability
to find a UAV sub-tour with a minimum set of intermediate charging
stops.

Therefore, we can assert that δ has a key impact on the TERRA
performance. As Ftotal plot shows, between two problem instances
with the same key parameters but different δ, TERRA generates a
better solution in the instance with lower δ. This parameter can be
very useful to take it into account in the scientific goal’s planning task.

3.4.2 Implications of R3 environments in TERRA

We realized two direct consequences in the performance of the algo-
rithm by extending TERRA to R3. The first is related to the integration
of legit and unlegit vertices, because there can be rugged terrains,
where the searching of legit vertices can be costly and may reduce the
effectiveness in the first and second stages. Therefore, we performed
a clustering optimization experiment where we assess the capability
of TERRA to find the minimal number of legit vertices required to
cover the set of target points. The second is related to the integration
of 3Dana [250] into the algorithm. For that, we performed a second
experiment to evaluate the overall performance of TERRA.

Both experiments have been performed under the real Mars DTM
shown in Figure 3.7. Taking advantage that the 3Dana algorithm aims
to find safe routes for the UGV, we wanted to assess the performance of
these experiments according to different safety levels in the navigation
of the heterogeneous simple UGV-UAV system. These safety levels
allows us to describe several risky environment settings through the
next two parameters:

- Terrain slope (P): 3Dana uses the terrain slope as a threshold
to compute a UGV’s path where every point has less slope
than this threshold. A high safety level will be determined by a
lower slope because the UGV’s path will avoid dangerous terrain
features.



3.4 experimental evaluation 65

- Security range (β): represents the distance percentage that is
going to be subtracted from a theoretical farthest distance (Rth)
the UAV can travel without running out of energy, e. g., with
Rth = 300 meters and β = 0.1 (10%). Then, R = Rth− (Rth ∗ β) =

270 meters. The objective of β is to avoid the UAV to run out of
energy due to unpredictable environmental conditions.

3.4.2.1 Clustering optimization experiment

The first experiment evaluates the first and second stages of TERRA.
We have described that the goal of these stages is to minimize the
number of legit vertices, denoted as NLV , required to cover the whole
set of target points. But, we cannot ensure that NLV is optimal on
every distribution. Then, we use the random scenario generator of
Appendix A to define the optimal number of legit vertices, known
as δ, on every distribution. The random map generator creates every
scenario ensuring that N target points are distributed in δ legit vertices,
inside a specific radius R and allocated around a real Mars DTM. Here,
the δ parameter allows us to define the optimal number of legit vertices
to cluster every target point on each scenario, i. e., TERRA can compute,
at the very least, δ legit vertices. Therefore, we are able to compare NLV

and δ to detect when TERRA has computed an optimized scenario.
We have defined NLV = δ as an optimized scenario.

Table 3.1: Clustering optimization of the first two TERRA’s stages in different
safety levels over the Mars DTM shown in Figure 3.7. It has been
computed a total of 10000 random scenarios for each safety level.
SS = scenarios with solution, WS = scenarios without solution, and
OS = optimized scenarios. RTime is the runtime in milliseconds.

Level β (%) P (◦) #SS #WS OS (%) RTime (ms)

L1 10 20 10000 0 71.0 6.5

L2 30 10 10000 0 62.3 12.2

L3 60 5 10000 0 63.1 16.7

L4 90 1 7241 2759 39.2 26.1

This experiment consists of the execution of ten thousand random
scenarios over the Mars DTM with the four different safety levels based
on R and P (L1 = low safety, L4 = high safety) displayed in Table 3.1. P
is ranged from 20

◦ to 1
◦ (plain terrain). β goes from 10% (low security

range) to 90 % (high security range). Then, the goal of this experiment
is to determine the optimized scenarios percentage in the L1-L4 safety
levels. The results in Table 3.1 show that as long as the safety level
increases from L1 to L4, the percentage of optimized scenarios (when
NLV = δ) decreases. L1 shows the highest percentage of optimized
scenarios, because a high P and a low β represents more possibilities



66 a cooperative simple ugv-uav path planning algorithm

to find legit vertices around the target points, and then, to achieve
NLV = δ. L4 shows the lowest percentage of optimized scenarios,
because of the highest β and the lowest P, so there are hardly any
legit vertices around the target points. Also, we can appreciate that
the computational time increases as long as it does the safety level,
because TERRA finds less legitimate vertices to ensure legit vertices
close to the target points. So, if a legit vertex cannot be reached by
the UGV, its means that the target point cannot be visited by the UAV
and then, the scenario does not have solution. As shows the L4 results,
TERRA does not find a solution for 2759 scenarios.

3.4.2.2 Computational performance Vs. Safety

The second experiment evaluates the performance of TERRA as a
whole, over different safety levels. The performance has been assessed
in terms of the computational time taken to solve every scenario
and the computed distance travelled by the heterogeneous simple
UGV-UAV system.

Table 3.2: Performance of the complete TERRA algorithm in different safety
levels over the Mars DTM shown in Figure 3.7. Every level has
been tested over the same 100 random scenarios. Fugv = distance
travelled by the UGV, Fuav = distance travelled by the UAV, SS
= scenarios with solution, and WS = scenarios without solution.
RTime is the runtime in seconds.

Level β (%) P (◦) Fugv (km) Fuav (km) #SS #WS RTime (s)

L1 10 20 10679.2 1096.1 93 7 226.6

L2 30 15 10727.5 1095.7 65 35 485.6

L3 60 10 11807.8 1109.7 4 96 3562.0

L4 90 5 0 0 0 100 0

This experiment consists of the evaluation of one hundred scenar-
ios over the Mars DTM shown in Figure 3.7 with the safety levels
displayed in Table 3.2. P is ranged from 20

◦ to 5
◦ (almost a plain

terrain). β goes from 10% (low security range) to 90 % (high security
range). The results in Table 3.2 shows that as long as the safety level
increases from L1 to L4, the travelling distance clearly increases, the
number of scenarios with solution decreases and the computational
time increases exponentially. The distance travelled by both robotic
systems is minimum in the lowest safety level L1 due to the UGV
has more ability to avoid obstacles (high P) and the UAV can fly a
farther distance (low β). Then, it is easier to reach a legit vertex close
to a target point, which in turn minimizes the distance travelled by
the robots. Also, the computed scenarios with solution decreases in a
higher safety level due to the UGV has less ability to avoid obstacles



3.5 summary 67

(low P) and the UAV can fly a shorter distance (high β). Then, it is
more difficult to reach a legit vertex. Consequently, the computational
time increases because of the UGV’s path planning computed by the
3Dana algorithm, i. e., it needs to expand more nodes around the
scenario to find a path among the legit vertices.

3.5 summary

Heterogeneous simple UGV-UAV systems have a brilliant future ahead
because of the synergies among UGV and UAV systems. Their com-
position and functional capabilities makes them a feasible system for
exploration applications. However, much effort is required to reach
high-level autonomous explorations were both UGV and UAV are
fully autonomous systems. In this chapter, we first introduced the for-
mulation of a novel exploration problem (ECU-CSURP) which can be
the basis for high-level and complex applications. Then, we described
the TERRA algorithm as a method which executes an ordered set of
stages to compute a cooperative path planning solution to the ECU-
CSURP. This algorithm exploits a particular cooperation synergy of
the UGV-UAV system. Furthermore, we provided the extension of the
ECU-CSURP and TERRA to R3 Euclidean spaces. The experimental
evaluation of TERRA demonstrates that its performance relies on the
battery capacity of the UAVs, the clustering level of the target points
in the exploration area, and the complexity of the terrain features.





4
A C O O P E R AT I V E M U LT I P L E U G V – UAV ( S ) TA S K
P L A N N I N G A L G O R I T H M F O R T H E L A S T- M I L E
D E L I V E RY P R O B L E M

After the research carried out to address the exploration problem
through a cooperative simple UGV-UAV path planning algorithm, our
interest shifted to investigate the same paradigm in similar problems,
and thus extend its scope for future real applications. Throughout this
research, we found out that, around 2013, a novel approach emerged
to solve the last-mile delivery problem (discussed in subsection 2.2.2)
taking advantage of a truck-drone cooperation. This method uses the
truck to transport the drones closer to customer locations, where the
drones can be launched to perform their ’last-mile delivery’. In fact,
we know that logistics companies such as, DHL, Amazon or UPS, are
currently working in the development of similar paradigms [205–207].
However, there is still much work to be done to understand which
paradigm optimizes the delivery in each scenario.

Here, we realised that the cooperation paradigm used to tackle the
ECU-CSURP in chapter 3, had many similarities with this novel ap-
proach. Also, we did not find existing algorithms solving the last-mile
delivery problem following the TERRA’s method. This triggered the
research presented in this chapter: a problem formulation as a general-
ization of the last-mile delivery problem, and the implementation of a
cooperative multiple UGV-UAV(s) task planning algorithm to solve it.
To assess our algorithm, we have performed an experimental evalua-
tion where we characterized its behaviour in a wide range of problem
instances, and we evaluated its performance taking as baseline a state
of the art algorithm.

4.1 a generalization of the last-mile delivery problem

The last-mile delivery problem that we focus on deploys a hetero-
geneous multiple UGV-UAVs system, where the UGV carries the
UAVs through intermediate points among the customer locations
from where the UAVs are able to perform the last-mile delivery. Specif-
ically, the problem that we propose arises from the ECU-CSURP defined
in chapter 3, and furthermore, it adds the constraints to become a gen-
eralization of the last-mile delivery problem. This problem is formally
named as the multiple UAVs and Charging station Vehicle Last-Mile
delivery Problem (mUCVLMP), and it is formulated as follows:

(i) An area modelled as an R2 Euclidean space.

69



70 a cooperative multiple ugv–uav(s) task planning algorithm

Figure 4.1: A mUCVLMP instance where a set of parcels p ∈ P and a depot
location v0 ∈ V are distributed around a R2 Euclidean space. R
denotes the UAV’s endurance as the farthest distance the UAV
can travel considering a return flight to the take off point. The
distance constraint is satisfied with d(v0, pi) > R.

(ii) A set of parcels which has to be delivered.

(iii) A distance constraint where all the parcels are out of the bound-
aries of the initial UAV’s endurance.

(iv) An heterogeneous multiple UGV-UAVs system modelled as
Dubins vehicles [247], which are vehicles with just a single con-
straint: forward movement at a constant speed.

(v) A UAV’s endurance function.

(vi) A depot location where both systems start and finish the mission.

(vii) The last-mile delivery can only be carried out by the UAVs.

(viii) A single UAV can only deliver one parcel simultaneously.

(ix) The UAVs can land on the UGV only if the UGV is already in
place.

(x) Only one UAV can take off at a time (parallel landing is not
allowed either).

(xi) Only one UAV can land at a time (parallel taking off is not
allowed either).

The objective is to plan a set of tasks for the heterogeneous multiple
UGV-UAVs system to deliver all the parcels while trying to minimize
the total delivery time. Figure 4.1 shows a problem instance with a



4.1 a generalization of the last-mile delivery problem 71

graphical representation of some of the problem constraints. Con-
straints (i), (ii) and (iii) are exactly the same as in the ECU-CSURP
definition, but defining parcels instead of target points. Constraint
(iv) defines that the UGV can carry a team of UAVs instead of only
one UAV as in the ECU-CSURP definition. Also, the UAV’s movement
speeds are constants for the taking off, landing and flying stages.
Constraint (v) sets the UAV’s endurance function as the farthest dis-
tance the UAV can travel with a fully charged battery. To compute the
UAV’s endurance, we define every parcel delivery as an eight stages
procedure, which starts when the UGV arrives to a vertex location
from where the UAV has to deliver a parcel:

1. The UAV is on the UGV, so it can charge its battery before to
take off (Tc = charging time)

2. If the UAV’s battery is full and there is other UAV landing/tak-
ing off, it also could wait before to take off (Two = waiting to
take off time).

3. It takes off carrying the parcel (To = take off time).

4. It flies to the customer location (Ta = flying time).

5. It delivers the parcel to the customer (Td = delivery time).

6. It flies back to the UGV’s location (Tb = flying time).

7. Before landing, it waits until there is a landing windows available
(Twl = waiting to land time).

8. It lands on the UGV (Tl = landing time).

Therefore, we denote the delivery time of a parcel as Ttrip = To +
Ta + Td + Tb + Twl + Tl . If Ttrip is maximum (the UAV drains all of The UAV does not

drain its energy in
Tc and Two

its battery), then Ta = Tb and the UAV’s endurance is R = Ta ·Vuav.
We assume the UGV does not have energy constraints, so it has enough
energy to complete a delivery mission.

Constraint (vi) denotes that the total delivery time will start and
finish at a depot location. Also, we assume that there will not be deliv-
eries from the depot location. Constraint (vii) requires that the parcel
has to be delivered by the UAVs. Also, we assume that every UAV can
deliver any parcel on board the UGV, so we do not distinguish among
parcels. Constraints (viii-xi) set the coordination policies to illustrate
a real-world delivery problem. These last constraints represent the
relevant differences to the ECU-CSURP definition.

Given the above mUCVLMP formulation, we define the mUCVLMP as a
collection of two sub-problems: a first sub-problem where the objective
is to find an ordered UGV’s path minimizing the UGV’s travel time
(Tugv), and a second problem focused on minimizing the delays caused



72 a cooperative multiple ugv–uav(s) task planning algorithm

by the deliveries (Tdelays). Therefore, the mUCVLMP objective can be
summarized as follows:

mininime → Ttotal = Tugv + Tdelays (4.1)

where the objective is to minimize the total delivery time as a
function of the UGV’s travel time and the time delays experienced in
the deliveries.

Figure 4.2: A mUCVLMP graphical representation, where a set of parcels p ∈ P,
a depot location v0 ∈ V, a set of areas a ∈ A, and a set of vertices
v ∈ V are placed in a R2 Euclidean space. The green line is
the UGV’s path, the orange dashed arrow is the UAV’s path of
u1 ∈ U, and the purple dashed arrow is the UAV’s path of u2 ∈ U.
Blue crosses are the take off vertices vt ∈ V, red crosses are the
landing vertices vl ∈ V, and black crosses are subsets of vertices
vgz ∈ V in the same location.

Let P denote the set of parcels {pi, . . . , pn} where a parcel pi ∈ P
for i = 1, . . . , n, and U denote the set of UAVs {uk, . . . , us} where
a UAV uk ∈ U for k = 1, . . . , s. Let V denote the set of verticesNote that: ∀pi ∈

P ∃ {vtk
j,i, vlk

j,i} for
a UAV uk.

V = v0 ∪Vt ∪Vl, where a vertex vj ∈ V for j = 0, . . . , m. Let v0 ∈ V
represent the depot location1. Let Vt denote the set of taking off
vertices {vtk

j,i, . . . , vtk
q,n} (blue vertices in Figure 4.2) for i = 1, . . . , n,

j = 1, . . . , q and k ∈ {1, . . . , s}. Let Vl denote the set of landing
vertices {vlk

j,i, . . . , vlk
q,n} (red vertices in Figure 4.2) for i = 1, . . . , n,

j = 1, . . . , q and k ∈ {1, . . . , s}. Let vtk
j,i be the take off vertex vj ∈ VNote that: vj = vtk

j,i
or vj = vlk

j,i. of the UAV uk to deliver a parcel pi, and vlk
j,i ∈ V be the landing

vertex vj ∈ V of the UAV uk after delivering a parcel pi. Let Vgz

denote the ordered tuple of vertices which represent the same spa-
tial location. For example, black vertex vg1 in Figure 4.2 is a set

1 Note that v0 /∈ Vt /∈ Vl because there will not be deliveries from the depot.



4.1 a generalization of the last-mile delivery problem 73

formed by {vtj+2,i+1, vlj+3,i+1, vtj+4,i+2, vlj+5,i+2, vtj+6,i+3}2. Thus, let
V be denoted as {v0, vtk

j+1,i, vlk
j+2,i, . . . , vtk

m−1,n, vlk
m,n} for i = 1, . . . , n,

j = 0, . . . , m and k ∈ {1, . . . , s}. Let the distance constraint be rep-
resented as {∀p ∈ P : d(v0, p) ≤ R} = ∅ (black dashed line in
Figure 4.2). Therefore, let a UGV’s path (green line in Figure 4.2)
be denoted as an ordered tuple {v0, vtk

1,1, . . . , vlk
m,n, v0}, where it may

contain any combination of take off and landing vertices. Let dvj,vj+1

represent the Euclidean distance from vj to vj+1, and Vugv is the UGV’s
speed. Then, we define the objective function of the first sub-problem
as follows:

mininime → Tugv = ∑
j∈V

tj,j+1
ugv (4.2)

tj,j+1
ugv =

dj,j+1

Vugv
(4.3)

The second sub-problem formulates the two type of delays experi-
enced in every delivery: a divorce delay ∆Tck

j,i as the UGV’s waiting
time in vtk

j,i till the UAV uk finishes its taking off, and the rendezvous
delay ∆Twk

j,i as the UGV’s waiting time in vlk
j,i till the UAV uk finishes

its landing. Therefore, the total delay is formulated as follows:

minimize → Tdelays =
m

∑
j=1

n

∑
i=1

s

∑
k=1

∆Tck
j,i · Xj + ∆Twk

j,i · Xj (4.4)

where Xj is a binary variable which takes a value 1 if vj ∈ Vt, or if
it is the last take off vertex of an ordered tuple vgz; or it takes a value
0 if vj ∈ Vl, or it is the last landing vertex of vgz.

Let Tck
j,i represent the required charging time of the UAV uk in the

vertex vtk
j,i, before the taking off, indispensable to have enough energy

to deliver the parcel pi. Let Twok
j,i be the waiting time of a UAV uk

with a full battery only when there is another UAV taking off at the
same time, and Tok be the constant taking off time of a UAV uk. Then,
we define the divorce delay as follows:

∆Tck
j,i = Tck

j,i + Twok
j,i + Tok (4.5)

To compute Tck
j,i we measure the drained energy of a UAV in time

terms. We assume an ideal scenario where the UAV’s charging ratio is
equal to the UAV’s discharging ratio, so the time spent charging the
battery is equal to the time spent discharging it. This assumption aims
to avoid the integration of physical constraints, such as wind speed or

2 Note that Vgz notation is described to facilitate the representation of vertices with
the same location.



74 a cooperative multiple ugv–uav(s) task planning algorithm

atmospheric density, which may lead to a very complex UAV’s energy
function. For instance, given an ordered tuple {vtk

j,i, vlk
j+1,i, vtk

j+2,i+1},
we have that Tck

j+2,i+1 = Ttripk
j+1,i. We assume that every UAV starts

with a fully charged battery, so the first charging time of each UAV
is Tck

i,j = 0. Also, we assume that every UAV can recharge its battery
while waiting on the UGV for its next delivery. Therefore, the charging
time in a vertex is defined by the past actions of the UAV. We define
two actions: the UAV is discharging energy in a delivery and the UAV
is charging on the UGV. Then, the charging time is formulated as
follows:

Tck
j,i =

j−1

∑
h=1

((
∆TcU(h)

h,P(h) · Xh + ∆TwU(h)
h,P(h) · Xh

)
·YU(h)

h + th,h+1
ugv ·Y

U(h)
h+1

)
(4.6)

0 ≤ Tck
j,i ≤ 2(R ·Vk

uav) + Tok + Tdk + Tlk (a)

Xh ∈ {0, 1}, ∀ h ∈ {1, . . . , j− 1} (b)

Xh = 1← vh 6= vh+1 ∨ vh ∃Vt (c)

Xh = 0← vh 6= vh+1 ∨ vh ∃Vl (d)

YU(h)
h ∈ {1,−1}, ∀ h ∈ {1, . . . , j− 1} (e)

YU(h)
h = 1← U(h) = k (f)

YU(h)
h = −1← U(h) 6= k (g)

where U : U(h) → uk is the mapping function which returns the
corresponding UAV uk to the vertex vh, R is the UAV’s endurance, and
P : P(h)→ pi is a mapping function which returns the corresponding
parcel pi to the vertex vh. The inequality 4.6a sets that the charging
time is always positive and less than the UAV’s endurance. Also, Xh
(4.6b) is a binary variable which takes a value 1 (4.6c) if vh is in Vt or
it is the last vertex of an ordered tuple vgz; or it takes a value 0 (4.6d)
if vh is in Vl or it is the last vertex of vgz. Last, Yh (4.6e) is a binary
variable which takes value 1 (4.6f) if the UAV uh deployed in vh is
equal to the UAV uk deployed in vk

j,i (action: the UAV is discharging
energy) or it takes value −1 (4.6g) if the deployed UAV uh is different
to uk (action: the UAV is charging energy).

Once the UAV uk has taken off at vtk
j,i to deliver the parcel pi, the

UGV travels to the rendezvous vertex vlk
j,i, where it waits till the

UAV finishes the delivery and lands on the UGV, i. e., a rendezvous
delay. There are two types of rendezvous delays: simple and complex
rendezvous.



4.1 a generalization of the last-mile delivery problem 75

A simple rendezvous is represented by any UGV’s path as an
ordered tuple {vtk

j,i, vlk
j+1,i} (see {vtk

j,i, vlk
j+1,i} in Figure 4.2), where

there are not intermediate vertices, and it is computed as follows:

Twk
j,i = tj,i,k

uav − t
H(vlk

j,i),j
ugv (4.7)

x < y ∀{vtk
x,i, vlk

y,i} ∈ V (a)

Twk
j,i ≥ Tlk, ∀ vlk

j,i ∈ V (b)

where tuav is the UAV’s travels time, tugv is the UGV’s travel time
and H : Vl → Vt ∀i ∈ {1, . . . , n} is the mapping function to obtain
the corresponding index of the take off vertex of a particular landing
vertex, i. e., H(vlk

y,i) = x. The inequality 4.7a ensures that the UGV
visits vtk

x,i before its rendezvous vlk
y,i for every parcel delivery, and the

inequality 4.7b sets that the UGV will always arrive to vlk
j,i before the

UAV begins the landing stage (Constraint ix). This ensures a reliable
coordination of the heterogeneous multiple UGV-UAVs system.

Let A denote the set of areas {a1, . . . , am}, where an area aj ∈ A
represents the set of covered parcels {p1, . . . , pn}. For instance, aj =

{pi, pi+1, pi+2, pi+3} in Figure 4.2. Also, let a UAV’s path be denoted
as an ordered tuple {vtk

j,i, pi, vlk
j+1,i} (see orange and purple dashed

arrows in Figure 4.2). Let dvtk
j,i ,pi

represent the Euclidean distance from

vtk
j,i to pi, and Vk

uav the speed of the UAV uk. Let Tdk be the constant
delivery time of a UAV uk. Let Twlk

j,i be the waiting time of a UAV uk

to land in vlk
j,i, if and only if there is another UAV already landing.

Let Tlk be the constant landing time of a UAV uk. Then, we define a
UAV’s travel time tuav as follows:

tj,i,k
uav = gk

H(vlk
j,i),pi

+ Tdk + gk
vlk

j,i ,pi
+ Twlk

j,i + Tlk (4.8)

gk
vj,p =

dvj,p

Vk
uav

(4.9)

Note that tuav does not integrate Tok, because it is part of the divorce
delay described in Equation 4.5, which means that the UGV will start
moving from vj to vj+1 as soon as the UAV has began to take off at vj.

A complex rendezvous is represented by any other UGV’s path
which has intermediate vertices in an ordered tuple {vtk

j,i, . . . , vlk
j+1,i}



76 a cooperative multiple ugv–uav(s) task planning algorithm

(see vertices of pi+4 and pn in Figure 4.2). In this way, a total ren-
dezvous delay ∆Twk

j,i is defined for any type of rendezvous as follows:

∆Twk
j,i = Twk

j,i + ∆Tck
j,i · Zj −

( j−1

∑
σ

∆TcU(h)
h,P(h) · Xh + ∆TwU(h)

h,P(h)·Xh

)
· Zj

(4.10)

σ← h = H(vlk
j,i) (a)

∆Twk
j,i ≥ Tlk, ∀ vlk

j,i ∈ V (b)

Zj ∈ {0, 1}, ∀ j ∈ {1, . . . , m} (c)

Zj = 1← H(vlk
j,i) = j (d)

Zj = 0← H(vlk
j,i) 6= j (e)

where the Equation 4.10a is used to simplify the summation index
of Equation 4.10, the inequality 4.10b sets that the UGV will always
arrive to vlk

j,i before the UAV begins the landing stage (Constraint ix),
Zj (4.10c) is a binary variable which takes value 1 (4.10d) if the take
off index H(vlk

j,i) is equal to the landing index of vlk
j,i and 0 (4.10e)

otherwise, and the Xj binary variable and functions U(h) and P(h)
are the same as described in Equation 4.6.

4.2 the courier algorithm for R2
euclidean spaces

The implemented task planning algorithm is formally named COop-
erative Unmanned deliveRIEs planning algoRithm (COURIER). This
algorithm implements a UGV-UAV cooperation paradigm with a het-
erogeneous multiple UGV-UAVs system to solve the mUCVLMP. Here,
the UGV is a moving charging station which carries the UAVs along
with parcels around locations, from where the UAVs can deliver the
parcels to the customers. Each UAV, with enough energy, is a qualified
candidate to perform the delivery. A delivery contains two vertices: the
take off and the landing vertex. In this way, the UAV starts the delivery
in the take off vertex, where it separates from the UGV. Then, the UAV
finishes the delivery in the landing vertex, where it rendezvous with
the UGV. Each UAV has its own charging station on board the UGV,
so it can recharge the battery at any time, as long as it is docked on the
UGV. The mUCVLMP finishes when every parcel has been delivered,
and the heterogeneous multiple UGV-UAVs system reaches the depot
location.

This algorithm replicates the first four stages implemented by
TERRA as shows Figure 4.3, but it builds a new fifth stage for com-
puting the complete task planning of the heterogeneous multiple
UGV-UAVs system. At the fourth stage, TERRA returned the UGV’s
directed path, where every vertex vj ∈ V has its own area aj ∈ A,



4.2 the courier algorithm for R2
euclidean spaces 77

Figure 4.3: Comparison between the five stages implemented by TERRA and
COURIER. Both algorithms implement the same first four stages.
However, the fifth stage of TERRA (Search Algorithm) returns a
path planning for the heterogeneous simple UGV-UAV system,
whereas the fifth stage of COURIER (Memetic Algorithm) returns a
task planning for the heterogeneous multiple UGV-UAVs system.

and every area is a set of the target points aj ← {ti, . . . , tn} covered
by this vertex. In the same way, COURIER achieves its fifth stage with
the computed UGV’s directed path and the set of areas covering the
parcels aj ← {pi, . . . , pn}. Then, it splits up the problem into sub-tours,
where each sub-tour is computed separately. A sub-tour sj ∈ S is
represented by its vertex vj, the two adjacent vertices {vj−1, vj+1} and
the set of parcels covered by its area aj ← {px, . . . , py}. At this point,
subsection 4.2.1 presents a geometrical rendezvous method to describe
and compute every rendezvous between the UGV and the UAVs.

Figure 4.4: The fifth stage implemented by COURIER. It is based on a memetic
search to look for an approximate solution and an arithmetic
solver to compute the final task planning of the solution.



78 a cooperative multiple ugv–uav(s) task planning algorithm

Then, COURIER builds a memetic algorithm based on a memetic
search and an arithmetic solver as Figure 4.4 shows. Thus, subsec-
tion 4.2.2 describes the memetic search of the fifth stage to look for the
plan that minimizes the objective function of mUCVLMP (Equation 4.1).
The memetic search implements a fitness function that computes
approximated solutions to the problem. Thereafter, subsection 4.2.3
presents the implemented solver to compute the complete task plan-
ning from that approximated solution.

4.2.1 The geometrical rendezvous method

The geometrical rendezvous method provides a robust geometrical
formulation to compute the task planning of any rendezvous at the
fifth stage. For that, we need a procedure to compute any divorce (∆Tc)
and rendezvous delay (∆Tw), and thus, to obtain the total delay Tdelay
(Equation 4.4) and the total time Ttotal (Equation 4.4) of any sub-tour in
the mUCVLMP. Once the algorithm knows these times, it can build the
task plan of a sub-tour. In the following, we describe the geometrical
rendezvous method to get the task plan of a simple sub-tour. Then,
we explain in detail the formulation to solve any sub-tour.

This method represents each parcel as an object with three geomet-
rical features (see Figure 4.5a): the Euclidean lines f j(x) and f j+1(x)
of the UGV’s directed path of the sub-tour, its orthogonal point port inport is the closest

point of the parcel to
the UGV’s path, and

so, the minimum
UAV’s travel time to

deliver a parcel

the UGV’s directed path, and the angle θ formed by the orthogonal
point with the x-axis. These three features enable the computation of
the geometrical rendezvous of a parcel, which is characterized by the
coordinates of the vertices vtk

j,i and vlk
j+x,i resulting from the following

system of equations:

f j(x) ∀j ∈ sj

hi(x) = tan(θ + φ) · (x− xpi) + ypi

}
(4.11)

where f j(x) represents any line of the UGV’s directed path in sub-
tour si, hi(x) is the UAV’s directed path, φ is an offset angle which
takes value α to compute the take off vertex vtk

j,i or β to compute
the land vertex vlk

j,i (see Figure 4.5b), and the tuple (xpi, ypi) with the
Cartesian coordinates of the parcel.

Given the take off vertex vtk
j,i and the landing vertex vlk

j+x,i of a
rendezvous, the geometrical method can compute the divorce delay
and the rendezvous delay as in the mUCVLMP (Equation 4.5 and Equa-
tion 4.7). For instance, Equation 4.12 is an example of computing
the divorce delay ∆Tck

j−1,i for the vertex vtk
j−1,i in Figure 4.5b, and



4.2 the courier algorithm for R2
euclidean spaces 79

(a) The key features of a parcel: f j(x),
f j+1(x), port and θ.

(b) An example of a rendezvous.

Figure 4.5: An example of the features of a parcel in the geometrical ren-
dezvous method. The α and β angles are used by the rendezvous
method to compute the tangent of the lines hj−1(x) and hpi(x).

Equation 4.13 is an example for the rendezvous delay ∆Twk
j+1,i for the

vertex vlk
j+1,i.

∆Tck
j−1,i= Tck

j−1,i + Twok
j−1,i + Tok

Tck
j−1,i = Tck

j−2,i − tj−2,j−1
ugv

(4.12)

∆Twk
j+1,i= tj+1,i,k

uav − t
vtk

j−1,i ,vlk
j+1,i

ugv

tj+1,i,k
uav = gk

vtk
j−1,i ,pi

+ Tdk + gk
vlk

j+1,i ,pi
+ Twlk

j+1,i + Tlk

tj−1,j+1
ugv =

dj−1,j+dj,j+1
Vugv

(4.13)

where Twok
j−1,i = 0 because there is no other UAV taking off at the

same vertex, and Twlk
j+1,i = 0 because there is no other UAV landing

at the same vertex.
Once obtained the divorce and rendezvous delays, we can compute

the total delay (Tdelay) and the total time (Ttotal) of the sub-tour as
follows:

Ttotal = Tugv + Tdelays (4.14)

Tugv = t
vj−2,vtk

j−1,i
ugv + t

vtk
j−1,i ,vj

ugv + t
vj,vlk

j+1,i
ugv + t

vj,vlj+2
ugv (4.15)

Tdelays = ∆Tck
j−1,i + ∆Twk

j+1,i (4.16)

At this point, the algorithm can build the total task plan of the
sub-tour. Figure 4.6 shows the task plan to deliver the parcel pi in Fig-
ure 4.5b. At start, the UGV moves from vertex vj−2 to vtk

j−1,i (tj−2,j−1
ugv ),

then it waits till the UAV1 takes off (∆Tck
j−1,i). At the vertex vtk

j−1,i, the
UAV1 charges the battery required (Tc1

j−1,i) to perform the delivery,
then it takes off (To1). After the taking off, the UGV goes to vertex



80 a cooperative multiple ugv–uav(s) task planning algorithm

vlk
j+1,i passing through vj (tj−1,j+1

ugv ). Then, it waits till the UAV1 has
landed (∆Twk

j+1,i). While the UGV is moving, the UAV1 goes to the
parcel location (g1

j−1,pi
) , performs the delivery (Td1), returns to theNote that g1

j−1,pi
is

the simplified form of
g1

vt1
j−1,i ,pi

UGV’s location (g1
pi ,j+2) and lands on the UGV (Tl1). At the end, the

UGV moves to vj+2 to continue with the deliveries.

Figure 4.6: A task plan example of a simple rendezvous with one UGV and
one UAV. It represents the divorce delay ∆Tc and the rendezvous
delay ∆Tw used to compute the total rendezvous time of Fig-
ure 4.5b.

So far, we have described how this method works to compute the
task plan of a simple sub-tour. Nevertheless, there might exist sub-
tours with any possible combination of vertices. In this way, this
method defines a robust model to represent all the vertices combina-
tions that may occur in mUCVLMP. These rendezvous combinations are
also called as vertices entanglements. In order to describe the whole
spectre of combinations, a scalability approach is defined, where com-
plex entanglements can be computed as a conjunction of elemental
entanglements. These elemental entanglements represent all the basic
combinations that may experience two parcels in a sub-tour, and are
split up into two classes: distance entanglements and time entangle-
ments. In the following, we describe the formulation of both classes to
compute the related delays, and so, the total rendezvous delay (Tdelays)
and total time (Ttotal) of the sub-tour. In this way, Tugv is always com-
puted following Equation 4.15. Also, we assume that the first vertex
of the sub-tour is always vtk

j,i, and all UAVs start with a full battery
i. e., Tck

j,i = 0.

4.2.1.1 Distance entanglements

The distance entanglements are those whose vertices can be ordered
by the Euclidean distance, thus, every vertex vq 6= vp∀vj ∈ sz, where
sz ∈ S is the ordered tuple of vertices linked to the sub-tour az ∈ A.
There are three distance entanglements, as Figure 4.7 shows: (a) No
distance entanglement, (b) Semi distance entanglement and (c) Total
distance entanglement. All of them have in common that Twok

j,i = 0,
because there is not other UAV taking off at the same vertex, and
all Twlk

j,i = 0, because there is not another UAV landing at the same
vertex.



4.2 the courier algorithm for R2
euclidean spaces 81

(a) No distance entanglement (b) Semi distance entanglement

(c) Total distance entanglement

Figure 4.7: The distance entanglements of the geometrical rendezvous
method.

The No distance entanglement (Figure 4.7a) is the most elemental
one, because it does not exist entanglement. Both parcels pi and pi+1

can be delivered by any UAV uk ∈ U, and the rendezvous delay can
be computed as in Equation 4.13. Instead, the divorce delay will vary
depending on the selected UAVs to deliver the parcels. Then, there
are two scenarios, where u1 = u2 or u1 6= u2.

The scenario where u1 = u2 computes Tdelays as follows:

Tdelays = ∆Tck
j,i + ∆Twk

j+1,i + ∆Tck
j+2,i+1 + ∆Twk

j+3,i (4.17)

∆Tck
j,i = Tck

j,i + Twok
j,i + Tok

∆Twk
j+1,i = Twk

j+1,i = tj+1,i,k
uav − t

vtk
j,i ,vlk

j+1,i
ugv

∆Tck
j+2,i+1 = Tck

j+2,i+1 + Twok
j+2,i+1 + Tok

Tck
j+2,i+1 = Tok + t

vtk
j,i ,vlk

j+1,i
ugv + Twk

j+1,i + t
vlk

j+1,i ,vtk
j+2,i+1

ugv

∆Twk
j+3,i = Twk

j+3,i = tj+3,i,k
uav − t

vtk
j+2,i+1,vlk

j+3,i+1
ugv



82 a cooperative multiple ugv–uav(s) task planning algorithm

The scenario where u1 6= u2 computes Tdelays as follows:

Tdelays = ∆Tc1
j,i + ∆Tw1

j+1,i + ∆Tc2
j+2,i+1 + ∆Tw2

j+3,i (4.18)

∆Tc1
j,i = Tc1

j,i + Two1
j,i + To1

∆Tw1
j+1,i = Tw1

j+1,i = tj+1,i,1
uav − t

vt1
j,i ,vl1

j+1,i
ugv

∆Tc2
j+2,i+1 = Tc2

j+2,i+1 + Two2
j+2,i+1 + To2

Tc2
j+2,i+1 = −∆Tc1

j,i − t
vt1

j,i ,vl1
j+1,i

ugv − ∆Tw1
j+1,i − t

vl1
j+1,i ,vt2

j+2,i+1
ugv

∆Tw2
j+3,i = Tw2

j+3,i = tj+3,i,2
uav − t

vt2
j+2,i+1,vl2

j+3,i+1
ugv

The Semi distance entanglement (Figure 4.7b) describes an inter-
lacing between vlj+2,i of the first parcel and vtj+1,i+1 of the second
parcel. Thus, the UAVs delivering the parcels must be different. So,
there is only one possible scenario, where u1 6= u2:

Tdelays = ∆Tc1
j,i + ∆Tc2

j+1,i+1 + ∆Tw1
j+2,i + ∆Tw2

j+3,i+1 (4.19)

∆Tc1
j,i = Tc1

j,i + Two1
j,i + To1

∆Tc2
j+1,i+1 = Tc2

j+1,i+1 + Two2
j+2,i+1 + To2

Tc2
j+1,i+1 = −∆Tc1

j,i − t
vt1

j,i ,vt2
j+1,i+1

ugv

∆Tw1
j+2,i = Tw1

j+1,i − ∆Tc2
j+1,i+1

∆Tw2
j+3,i+1 = Tw2

j+3,i+1 − ∆Tw1
j+2,i

The Total distance entanglement (Figure 4.7c) describes an inter-
lacing where the second parcel is delivered during the delivery of the
first parcel. Also, the UAVs delivering the parcels must be different,
and so, there is only one possible scenario, where u1 6= u2:

Tdelays = ∆Tc1
j,i + ∆Tc2

j+1,i+1 + ∆Tw2
j+2,i+1 + ∆Tw1

j+3,i (4.20)

∆Tc1
j,i = Tc1

j,i + Two1
j,i + To1

∆Tc2
j+1,i+1 = Tc2

j+1,i+1 + Two2
j+2,i+1 + To2

Tc2
j+1,i+1 = −∆Tc1

j,i − t
vt1

j,i ,vt2
j+1,i+1

ugv

∆Tw2
j+2,i+1 = Tw2

j+2,i+1 = tj+2,i+1,2
uav − t

vt2
j+1,i+1,vl2

j+2,i+1
ugv

∆Tw1
j+3,i = Tw1

j+3,i − ∆Tc2
j+1,i+1 − ∆Tw2

j+2,i+1

4.2.1.2 Time entanglements

The time entanglements are characterized by having some vertices
with the same Cartesian coordinates (see vg1 in Figure 4.8a-d), so they
can not be ordered in sz by the Euclidean distance. Instead, they need



4.2 the courier algorithm for R2
euclidean spaces 83

to be ordered in time terms. The group of vertices sharing the same
spatial location is denoted as vgz ∈ Vg, where Vg represents the set A sub-tour can have

several groups vgzof groups of vertices in a sub-tour. Then, as well as the divorce and
rendezvous delays, these sub-tours have to compute the total delay of
the group Twgz. The concept of Twgz

is the same as ∆Tc
and ∆Tw, but for a
group of vertices

(a) Take off time entanglement (b) Land time entanglement

(c) Semi time entanglement (d) Total time entanglement

Figure 4.8: The time entanglements of the geometrical rendezvous method,
where all of them have a group of vertices vg1 ∈ Vg in the sorted
sub-tour s1.

In this way, each time entanglement presents a vg1 with a different
problematic, and so, this method describes a different solution for each
one. For that, it defines Twok

j,i as an additional waiting time, where a
UAV has to wait, even with a full battery, to take off. Also, it introduces
Twlk

j,i as another waiting time, where a UAV has to loiter before
landing on the UGV. Therefore, any complex time entanglement can be
approached as a conjunction of multiple elemental types. As Figure 4.8
shows, there are four elemental types: (a) Take off time entanglement,
(b) Land time entanglement, (c) Semi time entanglement and (d)
Total time entanglement.

The Take off time entanglement (Figure 4.8a) arises the problem
of selecting the take off order of the UAVs involved in the group of
vertices vg1 = {vtk

j,i, vtk
j+1,i+1}. In the following we explain the process

to solve vg1 and the whole sub-tour. To clarify this explanation, we
will use Figure 4.9 as an example of a task plan for vg1 in Figure 4.8a.
There, we can observe that UAV1 takes off before UAV2, and so, UAV2

has to wait (Two2
j+1,i+1).



84 a cooperative multiple ugv–uav(s) task planning algorithm

Figure 4.9: A task plan example, with one UGV and two UAVs, for comput-
ing vg1 in the Take off entanglement of Figure 4.8a. The UAV2
has to wait for the take off with Two2

j+1,i+1 > 0. Also, note that

the total group delay Twg1 = Tc2
j+1,i+1 + Tcφ + Two2

j+1,i+1 + To2.

First, let Ck
j denote the function used to sort the vertices in vg1, and

s1 represent the ordered tuple of vertices. Then, the criterion set to
sort the vertices is shown in Equation 4.21. For instance, Figure 4.9
shows that vg1 = {vt1

j,i, vt2
j+1,i+1}.

Ck
j = Tok + tj,k

uav − Tck
j − Twok

j , ∀ j ∈ vg1

vg1 = {z ∈ {1, . . . , m− 1} : Ck
z > Ck

z+1)}
s1 = {vg1, vl1

j+2,i, vl2
j+3,i+1}

(4.21)

Second, this method formulates Twok
j ∀ j > 1 ∈ s1 to fulfil Con-

straint (x) of mUCVLMP as in Equation 4.22. For instance, Figure 4.9Constraint (x): only
one UAV can take

off at a time
shows that the UAV2 has to wait to take off, so Two2

j+1,i+1 > 0.

Q(j, k) = Tck
j − (Tck

j−1 + Twok
j−1 + Tok)

Twok
j =

|Q(j, k)| , if Q(j, k) < 0

0 , otherwise

(4.22)

Third, if the UAV’s battery level is not full after Tck
j , and Twok

j > 0,
this method introduces the following rule to transform the Twok

j time
into additional charging time Tcφ as in Equation 4.23. The idea is to
keep charging instead of waiting and doing nothing. Figure 4.9 shows
Tcφ as the additional charging time to fill up the battery.

Tcφ =

Twok
j , if Rk > Twok

j

Rk , otherwise

Tck
j = Tck

j + Tcφ

Twok
j = Twok

j − Tcφ

(4.23)

where Rk denotes the battery left after the charging time Tck
j .

Four and last, the ordered tuple s1 = {vg1, vl1
j+2,i, vl2

j+3,i+1} and the
computed Twok

j and Tck
j in the previous steps, enable the method to



4.2 the courier algorithm for R2
euclidean spaces 85

compute the group delay Twg1. Thus, we can obtain the total ren-
dezvous delay Tdelays for the Take off time entanglement. For instance,
Twg1 = Tc2

j+1,i+1 + Tcφ + Two2
j+1,i+1 + To2 in Figure 4.9. The following

Equation 4.24 shows the formulation to compute Tdelays in a Take off
time entanglement:

Tdelays = Twg1 + ∆Tw1
j+2,i + ∆Tw2

j+3,i+1 (4.24)

Twg1 = ∆Tc2
j+1,i+1

∆Tc2
j+1,i+1 = Tc2

j+1,i+1 + Two2
j+1,i + To2

∆Tw1
j+2,i = Tw1

j+1,i − ∆Tc2
j+1,i+1

∆Tw2
j+3,i+1 = Tw2

j+3,i+1 − ∆Tw1
j+2,i

The Land time entanglement (Figure 4.8b) arises the problem of
finding out which UAV is going to arrive first at the group of vertices
vg1. In the following we explain the process to solve vg1 and the whole
sub-tour. To clarify this explanation, we will use Figure 4.10 as an
example of a task plan for vg1 in Figure 4.8b. There, we can observe
that UAV1 lands before UAV2, and so, UAV2 has to wait (Twl2

j+3,i+1).

Figure 4.10: A task plan example with one UGV and two UAVs, for comput-
ing vg1 in the Land time entanglement of Figure 4.8b. The UAV2
has to wait for the landing with Twl2

j+3,i+1 > 0. Also, note that

the total group delay Twg1 = Tw2
j+3,i+1 + Twl2

j+3,i+1 + Tl2.

First, let Pk
j denote the time spent from the first vertex of the sub-

tour vtk
j,i, to the corresponding take off vertex of the landing vertex in

vg1, i. e., vt2
j+1,i+1 corresponds to vl2

j+x,i+1. Let Ck
j denote the function

used to sort the vertices in vg1, and s1 represent the ordered tuple
of vertices. Then, the criterion set to sort the vertices is shown in
Equation 4.25. For instance, vg1 = {vl1

j+2,i, vl2
j+3,i+1} in Figure 4.10.

Pk
j =

H(vlk
j )

∑
h=1

(
∆TcU(h)

h · Xh + ∆TwU(h)
h · Xh

)
+ th,h+1

ugv

Ck
j = Pk

j + tj,k
uav − Tlk ∀j ∈ vg1

vg1 = {z ∈ {1, . . . , m− 1} : Ck
z < Ck

z+1)}

s1 = {vt1
j,i, vt2

j+1,i+1, vg1}

(4.25)



86 a cooperative multiple ugv–uav(s) task planning algorithm

where H : vlk
j,i → vtk

j,i ∀i ∈ {1, . . . , n} represents the mapping
function to map the landing vertices to their corresponding take off
vertices, U : U(h) → uk is the mapping function which returns the
corresponding UAV uk of vertex vh, and Xh is a binary variable which
takes a value 1 if vh is a take off vertex or it is the last vertex of an
ordered tuple vgz; or it takes a value 0 if vh is a land vertex or it is the
last vertex of an ordered tuple vgz.

Second, this method formulates Twlk
j ∀ j > 1 ∈ s1 to fulfil ConstraintConstraint (xi): only

one UAV can land at
a time

(xi) of mUCVLMP as in Equation 4.26. For instance, Figure 4.10 shows
that the UAV2 has to wait to land, so Twl2

j+3,i+1 > 0.

Q(j, k) = Twk
j − (Twk

j−1 + Twlk
j−1 + Tlk

j−1)

Twlk
j =

|Q(j, k)| , if Q(j, k) < 0

0 , otherwise

(4.26)

Third and last, the ordered tuple s1 = {vt1
j,i, vt2

j+1,i+1, vg1} and the
computed Twlk

j in the previous steps enable the method to compute
the group delay Twg1. Thus, we can obtain the total rendezvous
delay Tdelays for the Land time entanglement. For instance, Twg1 =

Tw2
j+3,i+1 + Twl2

j+3,i+1 + Tl2 in Figure 4.10. The following Equation 4.27

shows the formulation to compute Tdelays in a Land time entanglement:

Tdelays = ∆Tc1
j,i + ∆Tc2

j+1,i+1 + Twg1 (4.27)

∆Tc1
j,i = Tc1

j,i + Two1
j,i + To1

∆Tc2
j+1,i+1 = Tc2

j+1,i+1 + Two2
j+2,i+1 + To2

Tc2
j+1,i+1 = −∆Tc1

j,i − t
vt1

j,i ,vt1
j+1,i+1

ugv

Twg1 = Tw2
j+3,i+1 + Twl2

j+3,i+1 + Tl2

The Semi time entanglement (Figure 4.8c) arises the problem of
selecting the takes off and landings order. This is an interesting spot
because it can drive to different vertices configurations for achieving
an optimal task parallelization. Nevertheless, the waiting time for
landing Twlk

j of a UAV is critical, because it can lead it to run out
of battery and so, a failed plan. For instance, many UAVs taking off
before a UAV waiting for landing, could lead a single UAV to run out
of battery because of that excessive delay.

In this way, we describe a mandatory criterion to solve this entangle-
ment: any UAV takes off before all the landings have been completed.
Following this criterion, vg1 can be split up in two subsets: the set
of take off vertices Vt, and the set of landing vertices Vl. Thus, both
subsets are sorted by computing Two and Twl as in the two previous
Take off and Land time entanglements. The subset Vl is firstly sorted
following the Land time entanglement as denotes Equation 4.26, and



4.2 the courier algorithm for R2
euclidean spaces 87

secondly, Vt is sorted as in a Take off time entanglement in Equa-
tion 4.22. Naturally, Vt has to be sorted secondly, because it needs
to update the rendezvous delays of the vertices in Vl, as well as
the UAV’s energy function. So, the ordered tuple of the sub-tour is
s1 = sorted(Vl) ∪ sorted(Vt), and the group delay Twg1 of this Semi
time entanglement is the last vertex of s1. Thus, the total rendezvous
delay is computed as follows:

Tdelays = ∆Tc1
j,i + Twg1 + Tw2

j+3,i+1 (4.28)

∆Tc1
j,i = Tc1

j,i + Two1
j,i + To1

Twg1 = ∆Tc2
j+2,i+1

∆Tc2
j+2,i+1 = Tc2

j+2,i+1 + Two2
j+2,i+1 + To2

∆Tw2
j+3,i+1 = Tw2

j+3,i+1

The Total time entanglement (Figure 4.8d) presents all the pre-
viously commented problems of time entanglements, where vg1 =

{vt1
j,i, vt2

j+1,i+1, vl2
j+2,i+1, vl1

j+3,i}. The criterion set to solve this entangle-
ment follows an ordered set of steps to sort vg1, and compute the total
rendezvous delay of the sub-tour. To clarify this explanation, we will
use Figure 4.11 as an example of a task plan for vg1 in Figure 4.8d.

Figure 4.11: A task plan example with one UGV and two UAVs, for comput-
ing vg1 in the Total time entanglement of Figure 4.8d. As we can
appreciate, Tdelays = Twg1 = ∆Tc2

j+1,i+1 + ∆Tw2
j+3,i+1.

The steps to solve this entanglement are described as follows:

1. Sort the take off vertices of vg1 following the criterion of Equa-
tion 4.22. For instance, vg1 = {vt1

j,i, vt2
j+1,i+1} in Figure 4.11.

2. One by one, insert the next take off vertex vt and its correspond-
ing vl in the ordered tuple of the sub-tour s1, which implies
computing the divorce and rendezvous delay of each delivery
considering the criteria of Equation 4.22 and Equation 4.26 to
compute Twl and Two. For instance, Figure 4.11 shows that UAV1

performs charging (Tc1
j,i) and takes off firstly (To1). Then, UAV2

has to wait for the take off (To2), so Two2
j+1 > 0. Thus, both of

them perform parallel deliveries (Td1 and Td2), but UAV1 arrives



88 a cooperative multiple ugv–uav(s) task planning algorithm

first to the UGV, so it lands (Tl1) without waiting. Therefore,
UAV2 has to wait (Twl2

j+3 > 0) before landing (Tl2) on the UGV.
The sub-tour is finished when UAV2 is finished landing.

3. On every vertex insertion, there arise three possible scenarios
to compute the delays. The first scenario is denoted by vg1 =

{vt1
j,i, vl1

j+1,i, vt2
j+2,i+1, vl2

j+3,i+1}, so the divorce and rendezvous
delay of the vertices are formulated as in the No distance en-
tanglement (see Equation 4.17 and Equation 4.18). The second
scenario is denoted by vg1 = {vt1

j,i, vt2
j+1,i+1, vl1

j+2,i, vl2
j+3,i+1}, so

they are formulated as the Semi distance entanglement (see
Equation 4.19). Lastly, the third scenario is defined by vg1 =

{vt1
j,i, vt2

j+1,i+1, vl2
j+2,i+1, vl1

j+3,i}, so it is formulated as the Total
distance entanglement (see Equation 4.20). For instance, the or-
dered tuple of the sub-tour s1 is equal to vg1 = {vt1

j,i, vt2
j+1,i+1,

vl1
j+2,i, vl2

j+3,i+1} in Figure 4.11, so it is formulated as a Semi
distance entanglement.

4. Once all the vertices have been inserted in s1 , the total ren-Note that s1 = vg1

dezvous delay Tdelays of the sub-tour is equal to the group delay
Twg1, which is particularly computed as the total delivery time
of the last delivery. For instance, Twg1 = ∆Tc2

j+1,i+1 + ∆Tw2
j+3,i+1

in Figure 4.11. The following Equation 4.29 shows the formula-
tion to compute Tdelays in a Total time entanglement:

Tdelays = Twg1 (4.29)

Twg1 = ∆Tc2
j+1,i+1 + ∆Tw2

j+3,i+1

∆Tc2
j+i,i+1 = Tc2

j,i + Two2
j + To2

j

∆Tw2
j+3,i+1 = g2

j,pi + Td2 + g2
pi,j + Twl2

j + Tl2

Finally, we have demonstrated that the geometrical rendezvous
method and the above elemental entanglements are able to represent
any complex combination of vertices that may occur in the mUCVLMP

defined in section 4.1. Also, we have shown that the total rendezvous
delay of all of them can be formulated as an ordered function of the
divorce and rendezvous delays. Therefore, following the rendezvous
method equations to compute the total rendezvous delays on each
elemental entanglement, we obtain the objective function 4.4 of the
mUCVLMP:

Tdelays =
m

∑
j=1

n

∑
i=1

s

∑
k=1

∆Tck
j,i · Xj + ∆Twk

j,i · Xj (4.30)

where Xj is a binary variable which takes a value 1 if vj ∈ Vt, or if
it is the last take off vertex of an ordered tuple vgz; or it takes a value
0 if vj ∈ Vl, or it is the last landing vertex of vgz.



4.2 the courier algorithm for R2
euclidean spaces 89

In the next section, we describe a memetic search, which integrates
this method to look for the best combination of vertices and UAVs for
minimizing the objective function 4.4 of the mUCVLMP.

4.2.2 The memetic search for the delivery optimization

The memetic search of COURIER aims to find the ordered tuple of
vertices and delivery UAVs that minimize the objective function 4.1
of the mUCVLMP. Memetic algorithms (MA) were firstly introduced
by Moscato et al. [254], and extended from the well-known genetic
algorithms by adding a local search operator to avoid the search
process a premature convergence. Our memetic search implements a
search procedure to find a feasible solution to the mUCVLMP. In the From now on, valid

is equal to feasiblefollowing, we first describe the fitness landscape [255] of the algorithm,
which is the weighted graph abstractly made by the algorithm to
search for a feasible solution. And, second, we present the devised
search procedure.

Our MA is a search algorithm focused on solving the mUCVLMP by
splitting the problem into sub-tours, as shows the rendezvous method
in the previous section, and solving each sub-tour individually. Each
sub-tour sj ∈ S is represented by a vertex vj, the two adjacent vertices
{vj−1, vj+1} and the area covering a subset of parcels of the problem
a← {pi, . . . , pn}. Then, we denote a configuration in the search algo-
rithm, as the genetic information required to generate a valid solution
for a single sub-tour. As shows Figure 4.12, each configuration is a
chromosome formed by genes, where each gene has the genetic in-
formation for a specific parcel delivery: the parcel coordinates pi, the
UAV information uk, the rendezvous vertices {vtj,i, vlj+x,i}, and the
rendezvous delay Tw% as a percentage between the minimum and
maximum delay allowed for each parcel. This rendezvous delay will
be used by the heuristic search to represent low and high values of the
real Tw for every parcel indistinctly, but always meeting the inequality
of Equation 4.7b. That is, a low value of Tw% means a low value of the
real Tw, and vice versa. For instance, the maximum value of Tw% is
100%, so that always vtj,i = vlj+x,i. These four features enable the al-
gorithm to fill the search space with a broad spectre of configurations
with any combination of vertices and UAVs.

4.2.2.1 The fitness landscape

The fitness landscape of a MA is characterized by its search space,
neighbourhood relation and guiding function [255]. We explain all
three below, looking more closely at the last one because of its rele-
vance to the algorithm.

The search space of our algorithm is shaped by an ocean of configu-
rations with different vertices and UAVs combinations. It is a weighted
graph, where the algorithm will dive to look for a feasible solution



90 a cooperative multiple ugv–uav(s) task planning algorithm

Figure 4.12: The genetic information kept in a chromosome to represent a
valid configuration for a sub-tour of the mUCVLMP. Each chro-
mosome has a set of genes, where each gene represents a parcel
delivery.

for every sub-tour. As an evolutionary algorithm, our MA deploys
a population-based search, and it keeps a heterogeneous group of
configurations on each iteration, known as population. This is a key
feature that differs them from the local search algorithms3. Thus, a
population represents a sub-graph of the above configurations in the
search space, i. e., a set of valid solutions for a single sub-tour.

The neighbourhood relation represents the moves that build arcs
from a single configuration to its neighbours in the search graph. Our
algorithm allows transitions between configurations by modifying only
the {Tw%, uk} genetics values. However, not all transitions are allowed,
because some of them can lead the algorithm to an invalid solution.
Thus, a valid transition is characterized for satisfying all the problem
constraints specified in section 4.1. For instance, an invalid solution
could be represented by an incorrect sorting among the rendezvous
vertices, i. e., the landing vertex is before the take off vertex in the
UGV’s path, which is forbidden, or it can be represented by a semi
distance entanglement (see Figure 4.7b) where the vertices have the
same UAVs, which is also forbidden by the mUCVLMP.

The guiding function gives a weight to each configuration in the
search graph, and it guides the algorithm through the graph. In general
terms, the guiding function, also known as fitness function, assesses
the quality of the configuration. Figure 4.12 shows that each configura-
tion keeps its own fitness value. The objective of our MA is to find the
configuration which minimizes the fitness function. For the quality
assessment of a configuration solving a sub-tour sz, we define the
following fitness function as a sum of functions measuring different
factors of the objective function 4.1:

Fitnessz = Ftw + Fσ + Ftc + Ff ree (4.31)

The function Ftw measures the quality of the rendezvous in the
sub-tour, aiming to minimize the rendezvous delay Tw of every parcel.

3 Local search algorithms only keep one configuration on each iteration.



4.2 the courier algorithm for R2
euclidean spaces 91

Specifically, Ftw computes the normalized sum of the single rendezvous
Tw. So, the higher the rendezvous time the higher Ftw, and so, the
worse the fitness value. Here, it is important to know that it does not
compute any entanglement as described in the rendezvous method,
otherwise, it would compute the exact solution in an enormous com-
putational time. Then, this function computes the rendezvous of each
parcel independently, as described in Equation 4.13, and also, it checks
that every configuration meets the inequality of Equation 4.7b. Given
the set of parcels in a sub-tour pi ∈ P where i = 1 . . . n, the fitness
value of this function is described as follows:

Ftw =
1

max(Tw)

n

∑
i=1

Twi (4.32)

The function Fσ measures the degree of entanglements in the sub-
tour, that is, it counts the number of intermediate vertices between
each rendezvous pair {vtk

j,i, vlk
j+x,i}, for every parcel in the sub-tour.

For example, the sub-tour sj = {vtk
j,i, vtk

j+1,i+1, vlk
j+2,i, vlk

j+3,i+1} has
Fσ = 2, because each rendezvous pair has 1 intermediate vertex. Also,
it checks if the configuration meets the inequality of Equation 4.7a.
On the one hand, a higher value could lead the algorithm to find
configurations with a high degree of entanglements, which can lead to
configurations with too complex entanglements, so the UAVs reach the
rendezvous vertex before the UGV, i. e., ∆Tw < 0, which is forbidden.
On the other hand, a lower value could give too simple configurations
where there are not parallel deliveries, hence, the algorithm would
lose efficiency. Given the ordered tuple of vertices sz = {vj, . . . , vm}
where j = 1 . . . m, the fitness value of this function is described as
follows:

Fσ =
m

∑
j=1

(
j− I(vlj)

)
·Xj (4.33)

where I : vl → vt represents the mapping function to get the index
of the take off vertex vtj linked to vlj, and Xj is a binary variable which
takes value 1 if the vertex in j is a landing vertex.

The function Ftc estimates the time lapse given to a UAV to perform
charging in order to minimize the divorce delay ∆Tc of every parcel.
Firstly, it computes fa as the sum of the inverse of the normalized
squared total time between every two consecutive parcels visited for
the same UAV. This is an estimation of the time that a UAV will spend
charging. For instance, Figure 4.13a shows that the time lapse tlapse is
the UGV’s travel time from vl1

j+1,i to vt1
j+2,i+1. Secondly, it computes

fb as the sum of the inverse of the normalized difference between the
UAV’s travel time of every two consecutive parcels for the same UAV.



92 a cooperative multiple ugv–uav(s) task planning algorithm

(a) A configuration with a low fitness
value Ftc.

(b) A configuration with a high fitness
value Ftc.

Figure 4.13: A comparison between a low and high fitness value of Ftc.

For instance, Figure 4.13a shows a configuration where the time
lapse tlapse between two consecutive parcels is higher than in Fig-
ure 4.13b. Also, the UAV’s travel time in Figure 4.13a is lower than
Figure 4.13b. Then, Figure 4.13a represents a scenario where the di-
vorce delay in vtk

j+2,i+1 will be minimum. However, Figure 4.13b shows
that the divorce delay in vtk

j+2,i+1 is expected to be higher. Therefore,
the Ftc fitness value of the configuration in Figure 4.13a will be lower
than the Ftc of the configuration in Figure 4.13b, because the divorce
delay in vtj+2,i+1 is estimated to be higher in the second case. Then,
given the set of UAVs U where k = 1 . . . s, the fitness value of this
function Ftc is described as follows:

Ftc = fa + fb (4.34)

fa =
s

∑
k=1

1−
(

tk
lapse

max(tlapse)

)2

fb =
s

∑
k=1

1−
(

Tk
end − Tpi

trip + Tk
end − Tpi+1

trip

Tk
end

)
where tk

lapse is the total time lapse between every two consecutive
parcels delivery by the UAV k, Tk

end is the UAV’s endurance in time
terms, and Tpi

trip is the total travel time to deliver the parcel pi.
The function Ff ree measures the total time in which no delivery

is being carried out, also called free time. That is, it computes the
total free time in order to look for solutions with a high degree of
parallel working or minimum free time. Given the ordered tuple of
vertices sz = {vj, . . . , vm} where j = 1 . . . m, the fitness value of Ff ree is
computed as follows:

Ff ree = t0,1
ugv +

m−1

∑
j=1

(
tj,j+1
ugv · Xj

)
+tm,0

ugv (4.35)



4.2 the courier algorithm for R2
euclidean spaces 93

where Xj is a binary variable which takes value 1 if j is a landing
vertex and j + 1 is a take off vertex, and 0 otherwise. Also, t0,1

ugv is the
UGV’s path from the depot to the first vertex, and tm,0

ugv denotes the
return to the depot from the last vertex. Both of them are essential to
compute the total free time along the UGV’s path.

(a) A configuration with a high fitness
value Ff ree.

(b) A configuration with a fitness value
Ff ree = 0.

Figure 4.14: A comparison between a low and high fitness value of Ff ree.

Note that Ff ree is completely different to tk
lapse computed in Ftc,

because the latter concerns to each UAV individually, whereas Ff ree
is the time when no UAV is flying. This is a small but important
difference, because tk

lapse allows the algorithm to look for solutions
with minimum divorce delays ∆Tc, and Ff ree to select those solutions
with less free time possible, and a minimum impact in the divorce
delays. For instance, Figure 4.14a shows a scenario with a Ff ree higher
value than Figure 4.14b, where Ff ree = 0. Here, the fitness will guide
the algorithm through solutions like Figure 4.14b.

Once the fitness landscape has been described as a weighted graph
with all the feasible and infeasible solutions to the mUCVLMP, we
now present the search procedure devised to carry out an efficient
navigation through the weighted graph.

4.2.2.2 The search procedure

The search procedure is composed by a sequence of architectural com-
ponents strategically placed to enable an efficient and agile navigation
in the weighted search graph. Algorithm 8 presents an overview of the
main components that form the search procedure. It is basically the
standard scheme for MA devised by Moscato and Cotta [256]. How-
ever, there is a wide spectre of strategies and operators that can be
combined in countless ways depending on the problem. As Figure 4.4
shows, the memetic search gets as inputs the set of areas A′, the set of
vertices V ′′, the radius R, the UAV’s data and the UGV’s data. Then,
these inputs are split up into sub-tours sj ∈ S, with which the search
procedure in Algorithm 8 works. In the following, we explain the



94 a cooperative multiple ugv–uav(s) task planning algorithm

implemented seven stages strategy, where each stage is performed by
a particular function of Algorithm 8.

Algorithm 8 The Memetic Search of COURIER

1: Procedure SearchProcedure (lastsubtour,subtour,uavs,ugv)
2: geoData← computeGeoFeatures(subtour)
3: population← genInitPop(lastsubtour,subtour,geoData,uavs,ugv)
4: while not terminationCriterion() do
5: newPopulation← generateNewPopulation(population)
6: population← updatePopulation(population,newPopulation)
7: if hasDegenerated(population) then
8: population← restartPopulation(population)
9: end if

10: end while
11: End procedure

first stage The computeGeoFeatures function in line 2. This func-
tion is specifically placed at the beginning to compute the three geo-
metrical features of each parcel (see Figure 4.5), required to implement
the geometrical rendezvous method presented in subsection 4.2.1.

second stage The genInitPop function in line 3. This function is a
cornerstone in the search procedure, as constructs an initial population
with configurations that place the search to the right space of solutions.
Due to the massive search graph that might be created because of
the combinations of vertices, we embed a constructive procedure (see
Algorithm 9) to inject valid or nearly valid configurations into the
initial population.

Algorithm 9 A constructive procedure for the initial population

1: Procedure genInitPop(subtour,geoData,UAVs)
2: initTws← initializeTws(subtour,geoData)
3: slowerUAV ← getSlower(UAVs)
4: for pi ∈ P do
5: f uavi ← interpolateTuav(geoDatai,slowerUAV)
6: radiusi ← interpolateRadius(geoDatai,tuavi,initTws)
7: rendezi ← interpolateRendez(subtour,geoDatai,radiusi)
8: end for
9: v_combinations← computeCombinations(rendez)

10: configurations← buildConfigurations(v_combinations,UAVs)
11: initPopulation← computeFitness(configurations)
12: return initPopulation
13: End procedure

This constructive procedure initializes values of the genetic feature
Tw% to interpolate its corresponding rendezvous vertices, and so,



4.2 the courier algorithm for R2
euclidean spaces 95

generate a vertices combination matrix with all the configurations.
That is, each Tw% represents a unique rendezvous for every parcel
delivery (see Figure 4.15). Depending on the number of targets in
the sub-tour, this procedure starts selecting more or less initial values
of Tw% (intializeTws function in line 2), always starting from Tw% =

100. Note that Tw% = 100 represents the easiest rendezvous because
vtj,i = vlj+x,i, but it is not usually a good configuration to minimize
mUCVLMP.

Figure 4.15: A graphical representation of the constructive procedure im-
plemented in the memetic algorithm. Each Tw% represents a
particular radius with the orthogonal point as the center. So,
Tw% = 100% in the orthogonal point. Also, we assume that
radiusi ' dvtj,i ,vlj+x,i

/2.

This procedure implements the three following functions to compute
the rendezvous vertices of each Tw%:

1. The interpolateTuav function in line 5. It estimates the UAV’s
travel time tj,i,k

uav for each parcel depending on the Euclidean
distance (instead of the distance along the UGV’s path) between
the take off and the landing vertices d(vtj,i, vlj+x,i). Thus, the
independent variable of f uavi is the distance between the two
rendezvous vertices (take off and landing), and the dependent
variable is the UAV’s travel time. The two vertices represent
an estimation of the maximum and minimum f uavi required
for that parcel delivery. Here, we assume the following linear
correlation: the higher d(vtj,i, vlj+x,i), the higher f uavi. Then, the
minimum f uavi is computed with min(d(vtj,i, vlj+x,i)), which is
usually when the rendezvous vertices are both the orthogonal
point of that parcel (see Figure 4.5), so d(vtj,i, vlj+x,i) = 0. The
maximum f uavi is computed with max(d(vtj,i, vlj+x,i)), which
is usually the distance between the two farthest vertices in the
sub-tour. One vertex is always the last vertex of the sub-tour (see
vj+1 in Figure 4.15), and the other vertex sometimes is the first
vertex of the sub-tour (see vj−1 in Figure 4.15) or the last landing



96 a cooperative multiple ugv–uav(s) task planning algorithm

vertex of the previous solved sub-tour in the problem. These
maximum and minimum values interpolate the f uavi function.

2. The interpolateRadius function in line 6. It computes the maximum
and minimum rendezvous delays for each parcel, so that, it can
interpolate the radius of a particular Tw% as Figure 4.15 shows.
For that, we make the following assumption for estimating tj,i

ugv:

Twk
j,i = tj,i,k

uav − tj,i
ugv (4.36)

tj,i
ugv '

radiusi

Vugv
'

2 · d(vtj,i, vlj+x,i)

Vugv
(4.37)

where d(vtj,i, vlj+x,i) is the Euclidean distance. Then, we make
the following system of equations to compute the rendezvous
delay with maximum radius:

2 ·max(d(vtj,i, vlj,i))

Vugv
+ Twk

j,i = f j,i,k
uav

f j,i,k
uav = f j,i,k

uav (max(radiusi))

 (4.38)

Also, the rendezvous delay with minimum radius is easily com-
puted with d(vtj,i, vlj+x,i) = 0, where the UAV’s travel time is
equal to the total time the UGV has to wait to the UAV to deliver
a parcel, i. e., fuav = Twk

j,i. Once these two limits are computed,
the procedure gets the particular radiusi of each initTws gathered
at the beginning.

3. The interpolateRendez function in line 7. It uses the radiusi values
to compute the rendezvous vertices as shown in Figure 4.15. For
that, it builds the following system of equations:

f j(x) ∀j ∈ sj

(x− xport)
2 + (y− yport)

2 = radius2
i

}
(4.39)

where f j(x) is the line of the UGV’s directed path in sub-tour
sj (see Figure 4.5), (xport, yport) are the Cartesian coordinates of
the orthogonal point, and, (x, y) are the Cartesian coordinates
of the rendezvous vertices. Note that each radiusi give us two
vertices: the first one in the UGV’s directed path is the take off
vertex, and the second one is the landing vertex.

Once the rendezvous vertices of each initial Tw have been computed,
the constructive procedure of Algorithm 9 builds a matrix with all



4.2 the courier algorithm for R2
euclidean spaces 97

the possible combinations of vertices for each parcel4 (computeCom-
binations function in line 9). Then, it assigns a random UAV to each
gene to complete the configurations (buildConfigurations function in
line 10). Then, this constructive procedure finishes by computing the
fitness of each configuration following the Equation 4.31, and select-
ing the best feasible configurations to construct the initial population
(computeFitness function in line 11).

third stage The terminationCriterion function in line 4. It checks if
any of the following stop conditions are met: size of the population be-
low than a threshold, number of restarts over a threshold, total number
of iterations reached and/or the convergence of the population.

fourth stage The generateNewPopulation function in line 5. It
defines the procedure of Algorithm 10 to bring up a new population
in the search process. It implements a mixed strategy as a sequence
of four phases, where the first phase is done individually, and the
other three are carried out in an iterative process. The four phases are:
(i) Heuristic recombination (lines 5-9), (ii) Blind recombination (lines
10-15), (iii) Mutation (lines 17-22) and (iv) Local-search (lines 24-27).

i. Heuristic recombination (lines 5-9). We devise a heuristic re-
combination operator to select the parental features that will be
transmitted to the next population. On each iteration, it selects
the best two parents of a sub-group of the current population
(tournamentSelection in line 6), and then, it applies the heuristic
recombination operator. We have implemented the dynastically
optimal recombination operator [257] (dynasticalRecombination in
line 7), whose objective is to create all the possible descendants
of the selected parents, and to find the best configuration of the
parental features. The recombination of the parental features is
done at the level of gene. That is, the genetic features of a genei
of the parent configuration A can only be recombined with the
genetic features of the same genei of the parent configuration B.
This is because a specific value of Tw% might not represent the
same for every parcel in the sub-tour, so the algorithm would
have to compute the rendezvous vertices for that value as shown
in genInitPop procedure. Thus, this will result in an explosion of
the computational time of the algorithm. Therefore, we mix the
genetic features among the same genes, so the algorithm does
not have to compute the rendezvous vertices again. Also, this
stage has been placed out of the iterative process to avoid the
following phases disturbing the smart element inserted in this
heuristic stage.

4 The number of combinations is computed as m2·p, where m is the number of initial
Tws values for each parcel, and p is the number of parcels.



98 a cooperative multiple ugv–uav(s) task planning algorithm

Algorithm 10 A mixed strategy for bringing up a new population

1: Procedure generateNewPopulation(population)
2: newPopulation← ∅
3: blindPopulation← ∅
4: mutPopulation← ∅
5: for i ∈ nh do //heuristic recombination
6: parents← tournamentSelection(population)
7: descendants← dynasticalRecombination(parents)
8: newPopulation← newPopulation ∪ descendants
9: end for

10: for i ∈ nb do //blind recombination
11: parents← stochasticSelection(population)
12: descendants← blindRecombination(parents)
13: blindPopulation← blindPopulation ∪ descendants
14: end for
15: newPopulation← newPopulation ∪ blindPopulation
16: if blindPopulation 6= ∅ then
17: for i ∈ nm do //mutation
18: winner← tournamentSelection(blindPopulation)
19: newMutation← mutation(winner)
20: mutPopulation← mutPopulation ∪ newMutation
21: end for
22: newPopulation← newPopulation ∪ mutPopulation
23: end if
24: if mutPopulation 6= ∅ then //local search
25: LSPopulation← localSearchEngine(mutPopulation)
26: newPopulation← newPopulation ∪ LSPopulation
27: end if
28: return newPopulation
29: End procedure

ii. Blind recombination (lines 10-15). We allocate a blind recombi-
nation operator which does not use any heuristic information to
produce the descendants. On each iteration, it selects two parents
through a stochastic method (stochasticSelection in line 11), and
then, it calls the recombination operator. We have implemented
a uniform crossover, whose objective is to generate two descen-
dants from the crossing between the two parents at randomly
selected crossing points. As well as the heuristic operator, the
blind recombination is performed at the level of gene.

iii. Mutation (lines 17-22). The descendants generated by the pre-
vious blind recombination operator are put on to a mutation
process. There is a tournament to select the best configuration
among a sub-group, and then, the genetic features Tw% and
uk are mutated. The mutation procedure randomly selects the



4.2 the courier algorithm for R2
euclidean spaces 99

genes that are going to be mutated, and then, it randomly selects
the genetic features to mutate. The mutation of the UAV genetic
feature is done by randomly selecting a different UAV. Also, the
mutation of the Tw% genetic feature requires to compute the
rendezvous vertices for the new value.

iv. Local-search (lines 24-27). The mutated population is driven to
a local search engine. We have designed a stratified approach
[258] in which the mutated population is split up into n levels,
and then, a tournament selection gets the best individual of a
sub-group of every level. The selected individuals are then put
on a hill-climbing search to minimize their fitness function. This
search stops when the fitness function has been minimized, or
a limit of iterations has been reached, which prevents the algo-
rithm to turn a simple solution into non-polynomially solvable.

fifth stage The updatePopulation in line 6. This function rebuilds
the old population with the new computed population. In the lit-
erature, there are several strategies [259] to build the new popula-
tion, but we have implemented the plus strategy. This strategy con-
structs the new population by taking the best configurations from the
population ∪ newPopulation.

sixth stage The hasDegenerated function in line 7. This function
checks if the search procedure has degenerated. For this assessment,
we implement a procedure following the Shannon’s entropy concept
[260] to study the diversity of configurations in the population. That
is, a population is degenerated if the number of equal configurations
is higher than a threshold. In this way, the search procedure has
degenerated if the number of successive degenerated populations is
higher than a given threshold.

seventh stage The restartPopulation function in line 8. This func-
tion resets the population in case of a degenerated search. As well,
there are different strategies to build a new population considering the
degenerated one. We implement the random immigrant strategy [261],
which consists on selecting a percentage of the best configurations of
the degenerated population, and then, add new generated solutions
from the scratch. These new solutions are computed as shows the
genInitPop procedure of Algorithm 9.

The search procedure iterates until the termination criteria is met.
At this point, the memetic search of COURIER has only estimated the
quality of the selected solution. Then, COURIER calls the arithmetic
solver described in the next section. This solver computes the real task
planning of the best solution selected as Figure 4.4 shows.



100 a cooperative multiple ugv–uav(s) task planning algorithm

4.2.3 The arithmetic solver for the task planning

The arithmetic solver of COURIER implements the rendezvous method
to compute the real task planning of the solution given by the memetic
search. It solves each sub-tour individually, but it considers the system
status after the previous sub-tour. The system status refers to the
battery level of the UAVs (Tr), the divorce and rendezvous delays of
the vertices (∆Tc and ∆Tw respectively), and the UGV’s location. In
this way, solving the last sub-tour, gives the final system status and so,
the task planning completes the resolution of the mUCVLMP.

The arithmetic solver (see Algorithm 11) follows an iterative exe-
cution, where it computes the system status on every vertex. As the
geometrical rendezvous method shows (see subsection 4.2.1), this al-
gorithm updates the system status depending on the vertex and the
vertices entanglement. In the following, we describe the execution flow
of the algorithm, defining how the system status is updated.

It starts by updating the total rendezvous delay tdelays and the UAV’s
battery level (updateBatteries function in line 3) to the system status
of the previous sub-tour. Also, it initializes the task planning variable
plan, which contains the sorted list of tasks for the robotic system, and
the set of group delays Twg, which represents the set of all the group
delays Twgz computed in the sub-tour. Then, it performs an iterative
execution in the set of vertices of the current sub-tour currSubtour.V,
where each vertex consists in the calculus of its associated tdelay, the

UGV’s travel time tj,j+1
ugv , and the updating of the UAVs’ batteries.

Every vertex starts by computing the UGV’s travel time to the next
vertex (groundTravelTime function in line 8). As we explain in the ren-
dezvous method, this time can be used by the docked UAVs to charge
theirs batteries. Then, the solver makes a distinction (conditional state-
ment in line 9) between the isolated vertices in a particular coordinate,
and the group of vertices which shares the same location. Following
the rendezvous method, single vertices are computed according to the
formulation for the distance entanglements. Instead, the vertices at
the same location are computed according to the time entanglements
formulation. The conditional statement in line 9 allows the solver to
know if vj is in some subset vgz ∈ Vg, where Vg is the set of subsets
that are time entanglements in the sub-tour. As a part of a distance
entanglement, the single vertex is already sorted, so the solver adds
the vertex to the task planning right away. Then, the solver makes
another distinction (conditional statement in line 11) to know if the
single vertex is a take off vertex, i. e., vj ∈ Vt, where Vt is the set of
take off vertices in the sub-tour, or if it is a landing vertex, i. e., vj ∈ Vl,
where Vl is the set of landing vertices.



4.2 the courier algorithm for R2
euclidean spaces 101

Algorithm 11 The arithmetic solver of COURIER

1: Procedure arithmeticSolver(lastSubtour,currSubtour,uavs)
2: Tdelays ← lastSubtour.Tdelay
3: uavs← updateBatteries(lastSubtour,uavs)
4: plan← []
5: Twgs← ∅
6: for vj ∈ currSubtour.V do
7: tdelay ← 0

8: tj,j+1
ugv ← groundTravelTime(vj, vj+1)

9: if vj /∈ vgz ∈ Vg then
10: plan.add(vj)
11: if vj ∈ Vt then
12: Tc← computeTc(currSubtour,uavs,vj)
13: Two ← 0
14: ∆Tc← Tc + Two+ uavs(vj).To
15: tdelay ← ∆Tc
16: uavs← updateBatteriesAfterTo(uavs,Tc,tj,j+1

ugv )
17: else
18: ∆Tw← computeTw(currSubtour,uavs,vj,Twgs)
19: tdelay ← ∆Tw
20: uavs← updateBatteriesAfterTl(uavs,∆Tw,tj,j+1

ugv )
21: end if
22: else
23: if isFirst(vj,Vg) then
24: Vgroups ← getElementalTimeEntanglements(Vg)
25: if |Vgroups[1]| > 0 then
26: vgz,uavs← solveLandEnt(Vgroups[1],plan,uavs,Twgs)
27: end if
28: if |Vgroups[2]| > 0 then
29: vgz,uavs← solveTotalEnt(Vgroups[2],plan,vgz,uavs,Twgs)
30: end if
31: if |Vgroups[3]| > 0 then
32: vgz,uavs← solveTakeOffEnt(Vgroups[3],plan,vgz,uavs)
33: end if
34: Twgs(z)← getGroupDelay(vgz)
35: tdelay ← Twgs(z)
36: plan.add(vgz)
37: uavs← updateBatteriesToEndGroup(uavs,vgz,tdelay)
38: end if
39: uavs← updateBatteriesToNextVertex(uavs,tj,j+1

ugv )
40: end if
41: Tdelays ← Tdelays + tdelay + tj,j+1

ugv
42: end for
43: plan← lastSubtour.plan ∪ plan
44: return plan,Tdelays
45: End procedure



102 a cooperative multiple ugv–uav(s) task planning algorithm

On the one hand, the take off vertices are characterized by the
divorce delay ∆Tc, as shown in the rendezvous method. The charging
time Tc depends on the current battery level Tr in time terms and the
UAV’s travel time Ttrip required to deliver the parcel (see section 4.1).
Thus, Tc is computed as follows (see computeTc function in line 12):

Tc =

0 , Tr > Ttrip

Ttrip − Tr , otherwise
(4.40)

Therefore, the divorce delay can be computed as: ∆Tc = Tc + Two +
To, where Two = 0 because it is a single vertex. Thus, the last step is to
update the battery level Tr of every UAV in the system after the take
off operation (updateBatteriesAfterTo function in line 16). The battery
level of the UAV that takes off in this vertex is computed as follows:

Trk = Trk + Tck − Tok − tj,j+1
ugv (4.41)

Then, the battery level of the rest of UAVs is:

Trk =

Trk − Tck − Tok − tj,j+1
ugv , if is flying k

Trk + Tck + Tok + tj,j+1
ugv , otherwise

(4.42)

On the other hand, the landing vertices are characterized by the
rendezvous delay ∆Tw. No matter what kind of complex entangle-
ments are involved, the computeTw function in line 18 implements the
formulation to solve them as a composition of the described elemental
distance entanglements. As well as the take off vertices, the last step
is to update the battery level of every UAV (updateBatteriesAfterTl
function in line 16). So, the battery level of the UAV that lands in this
vertex is computed as:

Trk = Trk − ∆Tw + tj,j+1
ugv (4.43)

And the battery level of the rest of UAVs is:

Trk =

Trk − ∆Tw− tj,j+1
ugv , if is flying k

Trk + ∆Tw + tj,j+1
ugv , otherwise

(4.44)

So far, we have described how the solver computes the distance
entanglements defined in subsection 4.2.1, and how it updates the
battery level of every UAV. Nevertheless, if the solver detects that the
current vertex belongs to a group of vertices vj ∈ vgz ∈ Vg (isFirst
function in line 23), the algorithm starts a procedure to solve the group



4.2 the courier algorithm for R2
euclidean spaces 103

Figure 4.16: An example of a sub-tour with a complex group vg1 formed
by all the time entanglements shown in subsection 4.2.1. The
sub-tour is based on six deliveries to be performed by two UAVs.

of vertices as a whole, i. e., to sort all the vertices in the group and to
compute the group delay Twgz. To do so, it splits the complex group
in the elemental time entanglements (getElementalTimeEntanglements
function in line 24): the Take off time, Land time, Semi time, and
Total time entanglement. As explained in the geometrical rendezvous
method, the Semi time entanglement can be computed as the union
between the Take off and Land entanglements. Instead, the solver
devises a particular function to solve the rest in a particular manner.
The way in which the elemental time entanglements are computed,
represents a specific paradigm to solve the problem. Figure 4.16 shows
an instance where there are all the elemental time entanglements in a
single group vg1. We take this example to explain the paradigm for
solving complex time entanglements.

Once the complex group vg1 has been split into elemental time
entanglements, we can distinguish the following three sub-groups: (1)
Vgroups[1] = {vl1

j,i, vl2
j,i+1} as the Land time entanglement, (2) Vgroups[2] =

{vt1
j,i+2, vl1

j,i+2, vt2
j,i+3, vl2

j,i+3} as the Total time entanglement, and (3)
Vgroups[3] = {vt2

j,i+4, vt1
j,i+5} as the Take off entanglement. The algo-

rithm solves these groups in an orderly manner:

1. The Vgroups[1] = {vl1
j,i, vl2

j,i+1}. It computes Vgroups[1] because our
top priority is to land every UAV waiting for landing, and so,
avoid them to run out of battery. The solveLandEnt function in
line 26 implements the formulation described for the Land time
entanglement in order to sort the vertices and compute their
rendezvous delays. Then, the solver updates the battery level of



104 a cooperative multiple ugv–uav(s) task planning algorithm

the UAVs that are participated in this group. The batteries are
updated as follows:

Trk = Trk − ∆Tw (4.45)

A possible solution for the Vgroups[1] in the vg1 of Figure 4.16 is
shown in Figure 4.17. There, we can observe that UAV1 arrives
and lands first on the UGV (Tl1). Thus, the UAV2 has to wait for
the landing with Twl2

j+3 > 0. At this point, the task plan contains
only the landing of these two UAVs, after the delivery of the
parcels pi and pi+1 of Figure 4.16.

Figure 4.17: A possible task plan for the land time entanglement in Vgroups[1]
of the vg1 of Figure 4.16. It contains the landing of two UAVs,
after the delivery of the parcels pi and pi+1. As the first group,
vg1 only has the sorted vertices of Vgroups[1].

2. The Vgroups[2] = {vt1
j,i+2, vl1

j,i+2, vt2
j,i+3, vl2

j,i+3}. The deliveries in
Vgroups[2] usually represent the larger delays, so the UGV has to
wait to the deliveries in vgz. Thus, they need to be performed
as soon as possible. The solveTotalEnt function in line 29 inte-
grates the procedure and formulation explained for the Total
time entanglement in the rendezvous method. As well, this pro-
cedure gives a sorted set of vertices vgz with their divorce and
rendezvous delays. Also, it updates the batteries of the UAVs
involved in Vgroups[2] as follows:

Trk = Trk + Tck − Ttrip (4.46)

Ttrip = Twok + Tok + gvt,p + Tdk + gp,vl + Twlk + Tlk

A possible solution for the Vgroups[2] in the vg1 of Figure 4.16 is
shown in Figure 4.18. There, we can observe that UAV1 delivers
its parcel (Td1) before the UAV2 (Td2), and so, it arrives and
lands first on the UGV. At this point, the task plan contains the
previous tasks, plus the complete deliveries of the parcels pi+2

and pi+3 of Figure 4.16.

It is important to highlight that the first two functions (solve-
LandEnt and solveTotalEnt) have as inputs the set of previous



4.2 the courier algorithm for R2
euclidean spaces 105

Figure 4.18: A possible task plan for the Total time entanglement in Vgroups[2]
of the vg1 of Figure 4.16. It contains the previous tasks plus the
complete deliveries of the parcels pi+2 and pi+3. As the second
group, the solver adds to vg1 the sorted vertices of Vgroups[2].

group delays Twgs, because they need them to update the ren-
dezvous delay ∆Tw of the landing vertices involved. Instead, the
third function only has take off vertices, therefore it does not
need those times.

3. The Vgroups[3] = {vt2
j,i+4, vt1

j,i+5}. The last group Vgroups[3] is
sorted by the solveTakeOffEnt function in line 32. As well as
the others, this function implements the procedure and formu-
lation to solve the Take off time entanglement described in the
geometrical rendezvous method. This procedure is able to sort
the vertices by computing the divorce delays of the take off ver-
tices in Vgroups[3]. Also, the batteries of the involved UAVs are
updated as follows:

Trk = Trk + Tck − Twok − Tok (4.47)

A possible solution for the Vgroups[3] in the vg1 of Figure 4.16 is
shown in Figure 4.19. There, the takes off to deliver the parcels
pi+4 and pi+5 have been added at the end of the previous task
plan. We can observe that UAV2 takes off first (second To2), and
so, the UAV1 has to wait for its taking off (second To1) with
Two1

j+9.

Figure 4.19: A possible task plan for the Take off time entanglement in
Vgroups[3] of the vg1 of Figure 4.16. It adds to the previous plan
the task plan resulting of the sorted vertices of Vgroups[3]. The
green scratched square Tx represents the remaining time (not a
task) to update the battery of the UAV2 in the next step.



106 a cooperative multiple ugv–uav(s) task planning algorithm

Once the group of vertices vg1 has been sorted and all the divorce
and rendezvous delays have been computed, the solver gets the total
delay of the group Twg1 (getGroupDelay function in line 34) focusing
on the task plan of the UAV of the last vertex, i. e., the task plan of
UAV1 in Figure 4.19. Thus, Twg1 = Tl1 + Tc1

j+4,i+2 + To1 + g1
j+4,pi+2 +

Td1 + g1
pi+2,j+6 + Tl1 + Tc1

j+9,i+5 + Two1
j+9 + To1 as shows Figure 4.19.

Also, the solver adds the task planning of the group to the general
plan, and it updates the batteries of all the UAVs (updateBatteriesToEnd-
Group function in line 37) until the last task of the group (second To1 in
Figure 4.19). For the UAVs not involved in the group, their batteries are
computed taking Twg1 as the time that these UAVs can use for charg-
ing, i. e., Trk = Trk + Twg1, without exceeding the battery capacity.
Instead, the solver needs to compute each involved UAV individually.
This is done by getting the last appearance of the UAV in the group
and then, updating until the last task. For instance, Figure 4.19 shows
that the UAV1 does not need to update its battery, because it performs
the last task of the plan (second To1), and so, its battery was already
computed by the solveTakeOffEnt function. However, UAV2 requires to
update its battery until this last task. The green scratched square Tx in
Figure 4.19 shows the additional time that UAV2 needs to update. The
updateBatteriesToEndGroup makes the following calculation to update
the battery of the UAV2:

Tr2 = Tr2 − Tx (4.48)

Tx = Twg1 − g2
pi+1,j+3 − Twl2

j+3 − Tl2 − Tc2
j+5,i+3 − To2−

g2
j+5,pi+3 − Td2 − g2

pi+3,j+7 − Tl2 − Tc2
j+8,i+4 − To2 (4.49)

Then, the next step is to update the batteries of all the UAVs till the
next vertex of the sub-tour (updateBatteriesToNextVertex function in line
39) as in Equation 4.50. Note that for every vertex in the sorted group
of vertices vgz ∈ Vg, tj,j+1

ugv = 0, but for the last vertex is tj,j+1
ugv > 0.

Trk =

Trk − tj,j+1
ugv , if is flying k

Trk + tj,j+1
ugv , otherwise

(4.50)

Lastly, whether the solver has computed a vertex or a group of
vertices, it adds the compute delay tdelay and the UGV’s travel time

tj,j+1
ugv to the total rendezvous delay Tdelays. Then, the solver finishes its

execution when the last vertex or group of vertices has been computed.
Here, the solver knows the total time required to perform all the
deliveries involved in the current sub-tour, and it appends the current
plan to the total task planning for solving a particular mUCVLMP

instance.



4.3 experimental evaluation 107

4.3 experimental evaluation

In this section we present the COURIER assessment solving the mUCVLMP.
We first provide an assessment analysis to characterize COURIER con-
sidering the main parameters fluctuations. This analysis explores the
behaviour of COURIER considering different number of UAVs for differ-
ent number of parcels. Also, this analysis investigates the impact of the
UAV’s endurance and UAV’s speed in different configurations. Thus,
the objective of this experiment is to provide an accurate algorithm
characterization in a broad spectre of mUCVLMP instances. Then, a
second analysis is conducted to evaluate the performance of COURIER

against the heuristic approach developed in Murray and Raj [179]
to solve the mFSTSP formulated by them in that research work. The
objective is to evaluate the performance of the best configurations of
COURIER found in the characterization analysis. Due to both mUCVLMP

and mFSTSP can be framed as a generalization of the last-mile delivery
problem, we design a particular experimental setup aiming to conduct
a fair comparison. Also, Appendix C shows the instance generator
developed for this experiment, and the parameter tuning performed
to set up the memetic algorithm for a proper evaluation.

The algorithm has been implemented in MATLAB, and the experi-
mental evaluation was carried out on a 2.6 GHz Intel Core i7 with 16

GB of RAM under Windows 10.

4.3.1 Experiment design

We mentioned in the literature that the last-mile delivery problem
is being studied in several ways in the past decade. Due to the com-
plex nature of the problem, there are (and keeps emerging) several
formulations dealing with different constraints aiming to optimize
objectives like the time, price or energy. In spite of having different
objective functions, all of them can be represented as a generalization
of the last-mile delivery problem. Here, we want to highlight the
mFSTSP MILP formulation by Murray and Raj [179], which arises from
the well-known FSTSP [4]. The mFSTSP deploys a truck with multiple
UAVs to perform the deliveries aiming to minimize the travel time
as well as the mUCVLMP. Also, Murray and Raj find the optimal so-
lution for some problem instances. Thus, we selected their heuristic
solution to measure the performance of COURIER, but always consid-
ering the similarities and dissimilarities of the problems, i. e., FSTSP

and mUCVLMP respectively. In subsection 4.3.3, we make a further
theoretical comparison before carrying out the performance experi-
ment. Then, the following experimental setup has been designed for
both the characterization experiment and the performance comparison
experiment.



108 a cooperative multiple ugv–uav(s) task planning algorithm

The experimental setup includes a suite of 360 mUCVLMP instances
split up in three different size of customers: N = {10, 20, 30}, where
each size of customer involves a total of 120 instances. Recently, Ama-
zon Prime Air announced [262] that its drones can fly till 12.5km with
a fully charged battery. This implies that current delivery drones have
an area range of 491km2. Therefore, in order to make real instances
were an autonomous truck carries multiple UAVs to perform deliver-
ies, the total area of a problem instance needs to be higher than 491km2.
Otherwise, the drones could fly from a single point, such as the depot,
covering all the deliveries, and no UGV would be required. In this way,
we set up a fixed area size of A = 600km2 for every problem instance.
Also, the random map generator used is the same as the one used
for the TERRA’s assessment (see Appendix A). We fixed the number
of clusters δ as the half of the size of customers for each different
size. Then, for each size of customers, we created four different UAV
configurations for the UAV’s endurance and UAV’s speed, following
the same pattern of configurations created by Murray and Raj [179]:
(i) Low-Range & Low-Speed (LRLS) , (ii) High-Range & Low-Speed
(HRLS), (iii) High-Range & High-Speed (HRHS) and (iv) Low-Range
& High-Speed (LRHS). On the one hand, Table 4.1 shows the speed
parameters in m/s of the different configurations: the take off speed,
cruising speed and landing speed; and the altitude at which the UAV
will fly.

Table 4.1: Speed parameters for the UAV’s configurations: Low-Speed (LS)
and High-Speed (HS), and the altitude at which the UAVs will fly.

Take off

(m/s)

Cruising

(m/s)

Landing

(m/s)

Altitude

(m)

Low-Speed (LS) 7.8 15.6 3.9 50

High-Speed (HS) 15.6 31.3 7.8 50

On the other hand, Table 4.2 shows the range parameters that define
the UAV’s endurance for each configuration. These parameters are
taken from the work of Murray and Raj [179]. They are used by the
mFSTSP to model a complex UAV’s energy function that computes the
UAV’s endurance on each delivery. This function considers the flying
stages of the mFSTSP with and without the parcel weights. That is, αt is
the consumption ratio taking off with a parcel, αc is the consumption
ratio cruising with a parcel, αl is the consumption ratio landing with
a parcel, βt is the consumption ratio taking off without a parcel, βc is
the consumption ratio cruising without a parcel, βl is the consumption
ratio landing without a parcel, γ is the consumption ratio serving a
customer and, δ is the consumption ratio waiting for landing. Instead,
COURIER does not consider the weight of parcels on its energy function,
so it only uses these parameters to compute the UAV’s endurance in



4.3 experimental evaluation 109

time terms Ttrip, and in distance terms R, as defined at the beginning
of section 4.1 (see Figure 4.1). Appendix C shows how these values
are computed specifically. In this way, we set up a fixed parcel weight
for every instance of 1kg in order to perform a fair comparison.

Table 4.2: Power consumption parameters for the UAV’s endurance: Low-
Range (LR) and High-Range (HR), taken from the work of Murray
and Raj [179].

αt αc αl βt βc βl γ δ

(W/(kg · m
s )) (W/ m

s ) (W) (W)

Low-Range (LR) 11 5.5 11 22 11 22 200 400

High-Range (HR) 11 5.5 11 24 12 24 225 450

Then, the battery capacities of the UAVs for the different configura-
tions are shown in Table 4.3. These capacities keep the same values as
the ones evaluated in Murray and Raj [179]. Also, note that the highest
value of 500kJ is computed to represent the real range R = 12.5km of
the Amazon’s Prime Air drone commented above.

Table 4.3: Battery capacity for the four UAV’s configurations: LRLS, LRHS,
HRLS, HRHS.

Battery Capacity

(kJ)
High-Speed (HS) Low-Speed (LS)

High-Range (HR) 500 400

Low-Range (LR) 250 200

Each UAV’s configuration was tested on 30 instances split up in
three configurations with different number of UAVs: Nuavs = {1, 5, 10}.
Thus, each configuration of available UAVs executes 10 different in-
stances for a single UAV configuration in a particular size of customers
instance. Then, the total number of instances can be expressed as:
Ninstances = 3 · 4 · 3 · 10 = 360 instances.

In addition to the above parameters, every generated instance has a
set of fixed parameters in order to execute either COURIER or mFSTSP:
the depot location (x = 0.5, y = 0.5) in the R2 Euclidean space, the
UGV’s speed Vugv = 11m/s and the UAV service time Td = 60s
shared by both models; and the UAV launch time sL

v,i = 60, the UAV
recovery time sR

v,k = 30 and the maximum payload capacity 2.3kg only
for the mFSTSP model. These last three values were extracted from the
numerical analysis in Murray and Raj [179].

Finally, aiming to enable future comparisons with other algorithms
in the literature, we present in Appendix C an extension for the
standard format TSPLib [252]. This extension has been used to create



110 a cooperative multiple ugv–uav(s) task planning algorithm

every instance during the experimentation process, and it contains
all the above explained parameters to be executed by any algorithm
solving the last-mile delivery problem.

4.3.2 Characterizing the COURIER algorithm

The objective of this experiment is to assess the COURIER algorithm
by analysing its behaviour under different UAV’s endurance parame-
ters and different number of UAVs, for configurations with different
number of parcels. For that, we executed COURIER over the 360 gener-
ated instances and gathered the results shown in Figure 4.20. In the
following, we provide an analysis of the impact for different UAV’s
configurations, the impact of having more or less UAVs available, and
its scalability.

Figure 4.20: Results of the COURIER execution in the 360 generated in-
stances. These instances represent four UAV’s configura-
tions (LRLS,LRHS,HRLS,HRHS), three numbers of parcels (N =
{10, 20, 30}), and three numbers of UAVs available (Nuavs =
{1, 5, 10}). The results show the total delivery time Ttotal . Each
row of number of customers (N) is depicted in a different scale to
make it easier the comparison among the UAV’s configurations.
Also, in spite of the different scales, it can be noted the difference
in magnitude among the number of customers configurations.

From the analysis of deploying different UAV’s configurations, we
can firstly highlight that the most significant parameter is the UAV’s
speed. Figure 4.20 shows, from left to right, the best UAV’s config-
urations, and, as can be noted, all the customer size configurations
follow the same order: (4) LRLS, (3) HRLS, (2) HRHS, (1) LRHS. That is,
the two best configurations are HRHS,LRHS, and the two of them have
high speed parameters for the UAVs. That is, higher speed values



4.3 experimental evaluation 111

enable the UAVs to travel faster over the same area, which minimizes
the delivery times as expected. Also, these higher speed values imply
the highest battery levels of the configurations in Table 4.3, which
result in larger UAVs coverage area. Hence, this produce a shorter
UGV’s path because of the Voronoi algorithm at the first stage (see
the Voronoi search method in chapter 3). Then, as the UGV is slower
than the UAVs, minimizing the UGV’s travel time results in being
more significant than minimizing the UAV’s travel time, and thus,
configurations with higher speed values complete the deliveries in the
shortest time.

Secondly, it is interesting how the LRHS configuration presents better
results than the HRHS, which might contradict the previous affirma-
tion about the higher battery levels are desirable to lower battery
levels. Nevertheless, the combination of low UAVs’ endurances and
high UAVs’ speed produce scenarios where the parallel deliveries
experience an increment among the UAVs. It is true that this combi-
nation makes the UGV to increase its UGV’s travel time because of
the Voronoi algorithm. However, when combined with a high speed
of the UAVs, it opens several ways to the algorithm to find complex
entanglements (as explained in subsection 4.2.1). This effect produces
the increment of parallel working, and so, the decrement of the time
when the system is not performing a delivery. Note how the functions
Ftc and Ff ree, explained in subsection 4.2.2, aim to minimize the time
when the UAVs are not delivering, and so to maximize parallel work-
ing. Then, we can state that the maximization of the parallel working
is more significant than the minimization of the UGV’s travel time.
From this analysis, we can assert the following Lemma 4.3.1:

Lemma 4.3.1. There is not need for deploying UAVs with huge and
expensive batteries that cover a a large area. It is preferable to deploy
faster UAVs with low battery capacities, than faster UAVs with too
high battery capacities.

From the analysis of the number of UAVs available, we want to
assess the polynomial performance evolution with the different UAVs
available, and so, to acknowledge how many UAVs are enough to mini-
mize the delivery time on these instances. From a business perspective,
this is an important question in a logistic company, because reducing
the operational costs of the UAVs and associated infrastructure allows
to maximize the profit.

As a first observation, we can see relevant differences between
solving an instance with 1 UAV and 5 or 10 UAVs. In fact, we see that
this difference becomes larger as the number of parcels increases. The
increment of the number of parcels along with the increment of the
number of UAVs enable the algorithm an explosion of combinations
to increase the parallel working in the deliveries. So, the greater the
parallel working the minimum is the total delivery time, and the
maximum is the difference between having 1 UAV and 5 or 10 UAVs.



112 a cooperative multiple ugv–uav(s) task planning algorithm

A second observation is related to the difference between solving
the instances with 5 and 10 UAVs. We can observe that the results are
almost the same between these two configurations in every plot. This
is because COURIER splits the task planning problem into sub-tours, so
even for N = 30 instances, the number of parcels per sub-tour is not
high enough in comparison to the number of UAVs. Thus, there is not
much difference between doing a sub-tour of 7 parcels with 5 UAVs
(of 5 UAVs available in total) than doing this sub-tour with 7 UAVs
(of 10 UAVs available in total). The increment of parallel working is
minimum, and so, the difference between configurations is minimum
as well. Also, the set of instances with N = 30 presents a slightly
greater difference between these configurations. This is due to the
increment of available UAVs, which makes the algorithm alternate
them as explains the Ftc function in subsection 4.2.2, and so it reduces
the divorce delays. Nevertheless, this slight improvement is not worth
the cost of deploying more UAVs. Thus, we can hypothesize that at
some particular number of UAVs, the algorithm starts to decrease its
performance for a particular set of instances, and also, this impact is
heavier for instances with more number of parcels.

Figure 4.21: Impact of the number of UAVs available in the different con-
figurations for the 360 generated instances. Each plot shows a
polynomial regression of the total delivery time Ttotal as a func-
tion of the number of UAVs. The HRLS plot shows that N = 30
is equal to N = 20.



4.3 experimental evaluation 113

Aiming to demonstrate this hypothesis, we show the Figure 4.21,
which shows the impact of number of UAVs in the total delivery time
in the different configurations and for all the generated instances. At
first, we observe the different impacts experienced by the configura-
tions with different number of parcels. The mentioned slightly greater
difference between N = 30 and the other configurations is now clearly
identified. That is, we can observe that the increment of the number
of UAVs in N = 30 configurations produces an almost exponential
decrement in the total delivery time. Also, this decrement flattens out
as the number of parcels decrease, because of the first observation,
i. e., less parcels require less UAVs. Also, we can observe that each plot
estimates the same global optima in the number of UAVs required to
optimize the performance, i. e., Nuavs ' 7. Therefore, the hypothesis
is demonstrated to be true, and we can assert the following Lemma
4.3.2:

Lemma 4.3.2. The polynomial increment of the number of parcels
demands a linear increment of the UAVs available.

4.3.3 Performance evaluation compared to the mFSTSP heuristic approach

The objective of this experiment is to assess the performance of
COURIER taking the heuristic solution for the mFSTSP [179] as the
baseline5. For that, we executed COURIER and mFSTSP-h over the 180

instances related to the configurations with higher speed (HRHS and
LRHS), because of their promising results in the previous characteriza-
tion analysis. In the following, we first provide a theoretical compari-
son between the cooperation problems i. e., the mUCVLMP and mFSTSP,
to highlight their relevant features. Second, we conduct a performance
evaluation in the total delivery times, and thirdly, we provide an
analysis between the UGV’s travel time and the total UAVs’ travel
time.

As we already mentioned in subsection 4.3.1, in spite of both al-
gorithms (COURIER and mFSTSP-h) exploit different cooperation ap-
proaches, both solve problems (mUCVLMP and mFSTSP) that are framed
as generalizations of the last-mile delivery problem. This is the essen-
tial common feature that allows the performance evaluation gathered
in this section. Nevertheless, before beginning the comparison, we
introduce the key features of both approaches to set up a proper refer-
ence frame where to carry out the comparison. In this way, Table 4.4
shows these key features for both problems.

The UGV+UAVs cooperation and Heterogeneous UAVs features note
that both deploy a heterogeneous multiple UGV-UAVs system to solve
the problems. The Rendezvous delay points out that they have different
cooperation models, which involves different times to compute the

5 From now on, we refer to the heuristic algorithm solving the mFSTSP, as the mFSTSP-h.
Please note that both were implemented by Murray and Raj [179]



114 a cooperative multiple ugv–uav(s) task planning algorithm

Table 4.4: Relevant features of the cooperation approaches deployed by the
COURIER algorithm to solve the mUCVLMP, and the heuristic solution
to solve the mFSTSP.

Features COURIER mFSTSP-h

UGV+UAVs Cooperation X X

Heterogeneous UAVs X X

Rendezvous delay Tw (UGV) UGV + UAVs

Who carries the deliveries? UAVs UGV+UAVs

Parallel deliveries X X

Objective function min Ttotal min Ttotal

UAV’s energy function Simple Linear function

Search space Unknown nodes Fixed nodes

Task planning Battery recharging Only actions

total delivery time. In COURIER, the flight phases of the UAVs are: (1)
Take off, (2) Fly to customer, (3) Deliver, (4) Fly back to UGV, and (5)
Land on the UGV. Here, the deliver phase might include any kind of
delivery procedure in a constant time. Instead, the UAVs land in the
customer location to perform the delivery in mFSTSP-h, which adds
two more phases: land and take off in the customer location. This is
because the mFSTSP-h considers the weight of the parcel. In this way,
the Rendezvous delay describes that the UAVs can wait in the customer
location for the UGV in the mFSTSP-h, but only the UGV can wait
for the rendezvous in COURIER. This is because, mFSTSP-h allows both
systems to carry out the deliveries, whereas COURIER only allows the
UAVs.

As well, Table 4.4 shows that both algorithms allow parallel de-
liveries. Also, COURIER describes a simple UAV’s energy function to
simplify the solution, but mFSTSP-h introduces a linear function based
on the parcel weight, speed and operation time. The Search space is
maybe the most relevant feature to measure and distinguish the com-
putational performance between them. The search space in COURIER

is built up by deliveries in which each parcel has its own geometrical
features, and so, different rendezvous delays percentages Tw% on each
gene (see Figure 4.12 in subsection 4.2.2). This means that a value of
Tw% = 50% has a particular meaning for every parcel, which makes
each parcel to have a whole different set of vertices to look for. This
causes an explosion in the size of the search graph. Instead, the search
space in mFSTSP-h is formed by a set of fixed nodes which are the
depot location and the deliveries location. As can be noted, the size
of the search graphs is clearly biased by this number of nodes. Lastly,
the Task planning feature distinguishes between the two cooperation
models, because COURIER computes a task planning including the



4.3 experimental evaluation 115

Figure 4.22: Results of the COURIER and mFSTSP-h execution in the 180 HRHS

and LRHS instances, for each number of parcels N = {10, 20, 30}.
Each plot shows the total delivery time Ttotal (left y-axis) of
both algorithms (COURIER = blue line, mFSTSP-h = orange line)
per instance (x-axis), and the number of deliveries #UGVdel
(red right y-axis) carry out by the UGV in the mFSTSP-h. The
black dashed lines denote the limits between the instances with
different number of UAVs. From 1 to 10 are instances with 1

UAV, from 11 to 20 are instances with 5 UAVs, and from 21 to
30 are instances with 10 UAVs.

battery level of the UAVs on each instant. Instead, mFSTSP-h considers
a full battery every time the UAV takes off to perform a delivery.

From the performance analysis, we aim to compare both algorithms
to obtain their performance on the different generated instances. For
that, Figure 4.22 shows the results of executing both algorithms for the
HRHS and LRHS instances for the three configurations of the number
of parcels N = {10, 20, 30} and number of UAVs (black dashed lines
on each plot). It specifically shows the total delivery time Ttotal in
seconds for every computed instance of each algorithm. As mFSTSP-h
can performs deliveries with the UGV, we also show the number of
deliveries #UGVdel carried out by the UGV in the mFSTSP-h.

Firstly, we observe that mFSTSP-h outperforms COURIER in all the
instances with 1 UAV. This is due to mFSTSP-h allows deliveries using
the UGV. Thus, minimizing the number of UAVs does not impact
mFSTSP-h at all. Even so, COURIER presents similar results in some
instances in the LRLS configuration with N = 10. Also, we observe in



116 a cooperative multiple ugv–uav(s) task planning algorithm

Figure 4.23: Results of the COURIER and mFSTSP-h execution in the 180 HRHS

and LRHS instances, for each number of parcels N = {10, 20, 30}.
Each plot shows the UGV’s travel time (normal lines) and the
UAVs’ travel time (dashed lines) of both algorithms (COURIER =
blue line, mFSTSP-h = orange line) per instance (x-axis). The verti-
cal black dashed lines denote the limits between the instances
with different number of UAVs. From 1 to 10 are instances with
1 UAV, from 11 to 20 are instances with 5 UAVs, and from 21 to
30 are instances with 10 UAVs.

HRHS that COURIER presents similar and some better results with N =

10. But, it scales worse than mFSTSP-h in N = 20 and N = 30 because of
the high percentage of parcels delivered by the UGV, and also, the area
size of the instance. That is, mFSTSP-h finds better solutions using the
UGV, when introducing more deliveries in the same space. However,
if the area size is larger, or the UAVs have a lower range as in LRHS,
our algorithm works slightly better. Also, we observe in LRHS that in
spite of the high number of UGV’s deliveries, COURIER usually finds
better solutions as the number of available UAVs increases, which
causes an increment in the parallel working among the UAVs.

Secondly, we note that a high percentage of the parcels (' 78% in
UGV Del. of Table 4.5) were carried out by the UGV in the mFSTSP-h
solutions. As a result, Figure 4.23 shows the UGV’s travel time and
the UAV’s travel time in COURIER and mFSTSP-h. Here, we observe
that the UGV’s travel time in the mFSTSP-h is higher in all instances
than in COURIER, because of that 78%. Here, we want to point out that



4.3 experimental evaluation 117

despite mFSTSP-h provides some theoretical better solutions, it may
be not efficient in some real instances, such as urban areas, where
there is a heavy traffic. Thus, the UGV can be greatly affected, and so,
the total delivery time. Instead, COURIER aims in minimizing the total
delivery time, but also, as it is an evolution of the TERRA algorithm,
it aims to minimize the UGV’s and UAV’s travel time at once, as
we demonstrated in section 3.4. Therefore, COURIER tries to keep in
balance lower values of both variables.

Table 4.5: Summary statistics of the COURIER and mFSTSP-h execution for the
180 instances generated with the HRHS and LRHS configurations.
The Gap= ((C− h)/h) ∗ 100, where C is the objective value given
by COURIER and h is the objective value given by mFSTSP-h. The
percentage is based on the minimum value obtained for each
configuration. RtimeA is the runtime in seconds of mFSTSP-h, and
RtimeB is the runtime in seconds of COURIER.

Gap (%)
UGV

Del. (%)

RtimeA

(s)

RtimeB

(s)

Avg Min Max Avg Avg Avg

N=10

1 UAV
HRHS 44.3 0.9 71.4 78 0.07 925.9

LRHS 12.0 -2.4 34.5 100 0.03 794.8

5 UAVs
HRHS 0.32 -20.1 32.9 70 0.15 678.1

LRHS -11.2 -32.1 7.2 100 0.11 803.4

10 UAVs
HRHS -5.1 -38.0 32.97 70 0.25 845.7

LRHS -11.8 -30.3 7.3 100 0.19 911.5

N=20

1 UAV
HRHS 108.7 53.6 172.1 68.5 0.48 1824.3

LRHS 29.1 2.9 64.9 92.5 0.28 1623.9

5 UAVs
HRHS 31.8 6.7 55.7 60 1.23 1689.1

LRHS -2.3 -15.1 28.0 91 0.87 1559.7

10 UAVs
HRHS 24.8 -7.7 45.1 59.5 2.58 1764.6

LRHS -3.1 -17.4 19.9 92 1.60 1594.3

N=30

1 UAV
HRHS 172.1 116.4 227.7 66.3 1.97 3851.1

LRHS 35.2 14.9 55.8 86.5 1.12 2477.3

5 UAVs
HRHS 49.0 29.7 82.8 50.8 5.08 3354.0

LRHS -0.09 -11.6 10.6 86.8 3.19 2274.6

10 UAVs
HRHS 38.5 23.9 63.9 50.5 8.71 2754.6

LRHS -0.9 -12.8 12.2 86.1 5.74 2201.4

Lastly, Table 4.5 shows the summary statistics where we show
the gap as the percentage difference between the solution given the
mFSTSP-h and COURIER, that is, Gap= ((C− h)/h) ∗ 100, where C is the
objective value given by COURIER and h is the objective value given by



118 a cooperative multiple ugv–uav(s) task planning algorithm

mFSTSP-h. Also, it shows the percentage of the parcels that have been
delivered by the UGV in mFSTSP-h, and the runtime of both algorithms.
Following the previous observations, we want to highlight the COURIER

performance in solutions with 5 or 10 UAVs. Also, we can observe
the high percentage of UGV deliveries, which is an average of 78%.
Finally, it is relevant to assess the runtime differences between both
algorithms. This is explained because of the dimensionality difference
between the search spaces. As we explained with Table 4.4, the search
space of COURIER is vastly larger than the search space of mFSTSP-h.
Nevertheless, COURIER, as well as TERRA, are off-line task planning
algorithms that compute a solution before the delivery starts, and so,
the runtime is not considered as a significant constraint for these kind
of off-line task planners.

4.4 summary

The last-mile delivery problem is an optimization problem that has
been addressed by logistic companies to improve their efficiency in
the parcel delivery and so, to increase their profit. In this way, the
heterogeneous multiple UGV-UAVs system is being intensively stud-
ied since companies like Amazon or DHL announced in 2015 their
interest in deploying these systems to solve the last-mile delivery.
Nowadays, the literature is increasing exponentially, providing solu-
tions with systems to minimize different objectives. In this chapter,
we presented a novel formulation as a generalization of the last-mile
delivery problem, called as mUCVLMP, which objective is to minimize
the total delivery time. Then, we described the task planning algo-
rithm called COURIER, which follows the first four stages of the TERRA

path planner presented in chapter 3, and implements a new five stage
for the task planning issue. This stage is formed by a memetic algo-
rithm with a particular heuristic search procedure to overcome the
mUCVLMP, and an arithmetic solver implementing a particular cooper-
ation model of the heterogeneous multiple UGV-UAVs system to get
the final solution. The experimental results of COURIER demonstrated
that the algorithm solves the mUCVLMP as a generalization of the last-
mile delivery problem. Also, they enabled us to understand its good
behaviour depending on the UAVs’ configuration and the number of
UAVs. Additionally, COURIER shows a huge potential to be adapted
for future commercial applications such as delivering supplies in war
zones or catastrophic areas.



5
A N AU T O N O M O U S C O N T R O L L E R F O R
C O O P E R AT I V E M U LT I - R O B O T S Y S T E M S

So far, the research presented in this dissertation has been focused on
cooperative planning algorithms that deliberate solutions to overcome
exploration and last-mile delivery problems efficiently. However, by
themselves, these algorithms cannot fully take control of the operation
of robotic systems. Instead, autonomous controllers for multi-robot
cooperation, such as the presented in section 2.3, are commonly used
for this purpose. These autonomous controllers are software entities
which integrate different modules to operate a robotic team with a
certain level of autonomy. In particular, our algorithms represent just
the decision-making module of these autonomous controllers.

In this chapter, we aim to contribute to the research efforts for
achieving a high-level autonomy of cooperative multi-robot systems.
We present Autonomous coopeRatIve Execution System (ARIES), an
autonomous controller designed for cooperative multi-robot systems,
compatible with any robotic domain, adaptable to any problem com-
plexity and qualified to respond to failures. The ARIES controller
is built on the Teleo-Reactive EXecutive (T-REX) architecture [263], a
multi-agent architecture to control robotic systems. A brief description
of T-REX is provided in the next section. Considering its advantages,
our objective is to extend the T-REX architecture to build a cooperative
controller following the hierarchical leader–follower paradigm. Sec-
tion 5.2 describes the planning paradigm used by ARIES. Section 5.3
describes the hierarchical execution flow and the main elements of
the controller. Then, we show the results of a simulation experiment
performed to demonstrate the ARIES capabilities in section 5.4.

5.1 a t-rex overview

The purpose of this section is to introduce the T-REX architecture
[263, 264] to the reader. T-REX is a goal-oriented system that follows
the timelines-based planning paradigm [265–267]. As Mayer et al.
[268] describe, the timelines-based planning paradigm aims to control
complex physical systems through the synthesis of desired temporal
behaviours (called timelines) over robotic features with associated
temporal functions. In timeline-based planning, these time-varying
robotic features are called state variables, e. g., the navigation system.
The values that a state variable can take over time are named as tokens.
Then, a timeline referred to a state variable is a sequence of tokens
that defines its temporal evolution, such as the navigation control of a

119



120 an autonomous controller for cooperative multi-robot systems

rover reporting its current position in real time. The task of a planner
is to find a temporal allocation of tokens that brings the timelines into
a desired state, satisfying the rules and special conditions known as
goals.

In T-REX, the state variables are distributed into modules called
reactors. A reactor manipulates specific information, such as the nav-
igation system managing just the positioning and navigation policy
of a rover. State variables are exclusive property of only one reactor.
There are two classes of state variables:

• Internal state variables are controlled by the owner reactor. The
only reactor that defines a state variable as internal has sole
responsibility to update it via observations. Also, goals posted
by other reactors to this state variable can be considered by the
reactor to plan ahead on any goal state.

• External state variables provide the world information to a reactor
that enables to define its own internal state, but the reactor has
no control over them. However, the reactor can request a specific
state on an external variable posting goals to the owner reactor.

Each T-REX reactor encapsulates the planning and execution pro-
cesses into a control loop modelled as a state machine. The frequency
at which the state update happens is dictated by a central clock, which
uses the tick as the time unit. The duration of a tick is a matter of
design. The control loop of a T-REX reactor is based on three ordered
steps:

• Synchronization to keep updated its internal state variables by
monitoring the external state variables. That is, a reactor update
may produce a goal execution over an internal state variable of
another reactor.

• Dispatching goals among reactors in a timely manner. Each reac-
tor defines its own dispatching window to identify when tokens
(following the token start time) on an external state variable
should be transformed into goals for the reactors that declares
the state variable as internal. The dispatching window, denoted
as HD, is defined as in Equation 5.1, where τ is the execution
frontier that expresses the current tick of the execution, λ is the
latency defined as the maximum number of ticks that a reactor
has to deliberate and π is the planning horizon of a reactor
representing the look-ahead for deliberation.

HD = [τ + λ, τ + λ + π] (5.1)

This implies that a reactor A dispatches a goal to a reactor B
(owner of the state variable) as soon as the start time of the



5.1 a t-rex overview 121

goal intersects the HD of the reactor B. The dispatching window
guarantees that each reactor has enough time, thanks to λ, and
enough information, thanks to π, to deliberate on goals provided
by other reactors.

• Deliberation to plan a sequence of tokens aiming to achieve the
received goals on every reactor.

Therefore, a T-REX agent is formed by a synchronized set of re-
actors, whose objective is to change the environment of the robotic
platform through actions on their state variables. This division enables
the problem to be distributed into several reactors in different abstrac-
tion levels. Typically, we can differentiate deliberative and executive
reactors. Deliberative reactors are aware of the high-level mission goals
and could require larger temporal scopes (λ) for problem solving. In-
stead, executive reactors are in a lower abstraction level and commonly
implement reactive behaviours. Then, the T-REX engine is in charge of
synchronizing all reactors, so they can be executed concurrently and
all are notified of the evolution of that (external) state variable that
affect them, being able to deliberate and dispatch appropriated plans.

Figure 5.1: A T-REX agent is formed by multiple reactors (red boxes) which
are connected through state variables provided by one reactor as
internals (solid lines) and available for other reactors as externals
(dashed lines).

We present an example of a T-REX agent in Figure 5.1. This T-REX
agent is formed by two deliberative reactors (Path-Planner and Task-
Planner), two executive reactors (Navigation and Device Controller) and
the Dispatcher reactor. The Path-Planner, which has the Waypoint state
variable as external, computes the routing for the vehicles and reports
each target point to Navigation by posting a goal to the Waypoint state
variable. Then, Navigation updates the Waypoint state via posting an
observation when the target point is achieved. The Dispatcher is in
charge of communicating with the robotic system. As can be observed,



122 an autonomous controller for cooperative multi-robot systems

the communication among reactors is carried out via observations and
goals to the state variables.

Therefore, T-REX is an architecture which integrates both the delib-
eration and reaction processes within a single agent to cover the high
and low-level mission management. Nevertheless, the current T-REX
version presents the following limitations in multi-robot cooperation
domains: (i) centralized execution, that is, T-REX was originally built
to be deployed in a centralized system which can execute a single
or multiple T-REX agents and; (ii) centralized communication, which
means that T-REX does not support the communication among dis-
tributed agents executed in different robotic systems. These limitations
make a tough task to bring up a T-REX based architecture which could
deal with any multi-robot cooperation scenario.

The autonomous controller presented in section 5.3 represents a
hierarchical architecture to enhance T-REX for its deployment in any
cooperative multi-robot domain. To do that, we have integrated the
hybrid leader-follower paradigm (discussed in subsection 2.3.4) into T-
REX. This hybrid paradigm can upgrade the T-REX based architecture
in the following points: (i) distributed execution, that is, capabilities
to response to individual robot failures without leading to a complete
team failure and to be scalable to the problem complexity and; (ii)
hierarchical deliberation, which centralizes the high-level planning
into the leader, gives the capability to coordinate changes on the
agent’s behaviours in response to a dynamic environment or changes
in the team.

5.2 from temporal action-based to timeline-based plan-
ning

As we have specified in the section above, the T-REX architecture
follows the timeline-based paradigm to model the world of the robotic
system. Recent studies about the timeline-based planning [269, 270]
demonstrate that it has not been reached a complete characterization
of this paradigm complexity to model the behaviour of robotic systems.
For now, these studies demonstrate that simplified formulations of
timeline-based problems are EXPSPACE-complete and then, can be
expressive enough to be stated as action-based temporal planning
problems. Nonetheless, it is still unclear where the complexity border
between the timeline-based planning and the action-based temporal
planning is.

In this way, we have chosen the action-based temporal planning for
the following two reasons: first, action-based is commonly used in
the planning community, so there is a broad variety of action-based
temporal planners available to be used in ARIES; and second, to open
up an initial step to encode a temporal action-based paradigm such
as Planning Domain Definition Language (PDDL) [271] into a timeline-



5.2 from temporal action-based to timeline-based planning 123

based paradigm. Bernardini and Smith [272] present a complete trans-
lation from a temporal action-based planning, such as PDDL2.2 [273],
to a timeline-based planning, such as New Domain Definition Lan-
guage (NDDL) [274]. In our case, we present initial translation prim-
itives from PDDL2.1 to the timeline-based language used by T-REX,
i. e., the Domain Definition Language (DDL) [275].

Figure 5.2: The translation flow implemented in ARIES between a PDDL
Planner with action-based temporal planning, and the Planner
Reactor from ARIES with timeline-based planning. PDDL-Lib is
able to encode an actions plan as a tokens plan thanks to the
domain and effects files.

Contrary to the timelines-based paradigm used by T-REX, an action-
based temporal language such as PDDL2.1, uses predicates logic and
the world is seen as an entity that can be in different states. The domain
specifies actions that can be performed to change the world state and,
only applicable when some particular states are set. This paradigm
aims to find a sequence of actions that, from an initial world state,
through applying successive actions, the system achieves a desired
goal state. So, as T-REX and PDDL2.1 are not initially compatible, a
tailored solution was required to merge the action-based paradigm
used by PDDL2.1 to the timelines-based paradigm accepted by T-REX.

Therefore, we developed a common language between PDDL and
T-REX that translates the sequence of actions of a PDDL-based planner
into a sequence of tokens over their state variables with temporal
constraints. This translation is performed thanks to the PDDL-lib as
Figure 5.2 shows, a PDDL library developed by Muñoz et al. [276] to
extract relevant information from PDDL files, execute any PDDL-based
planner and read the generated plan in order to execute it. Particularly,
PDDL-lib requires the domain file and an effects file to translate a
sequence of PDDL actions (action-based temporal paradigm) as a
sequence of tokens (timeline-based paradigm). In the following, we
present the functional scope of both configuration files:

• The PDDL domain file, as we explained above, describes the
actions required to change the world state. We use a particular
naming convention which allows PDDL-Lib to identify PDDL ac-
tions as tokens on their specific state variables. Notwithstanding
this naming, we have not reached a complete translation of the



124 an autonomous controller for cooperative multi-robot systems

PDDL domain file, due to semantic differences that we have not
considered yet, for instance, the effects and conditions of every
action (this is the reason we created the effects file explained
below). Thus, we can only guarantee a translation for simplified
domain formulations. Currently, we are able to translate the
PDDL predicates and temporal actions as tokens belonging to
state variables as follows:

– A PDDL predicate follows the format (StateVariable_Predicate
A1...An). PDDL-Lib translates it as the token Predicate with
the attributes A1...An belonging to StateVariable. The fol-
lowing Figure 5.3 shows an example of such formulation.
For instance, UGVBase is the state variable of the predicate
At, whose attributes are: ?i, ?x and ?y. Another example,
UAVBase is the state variable of the predicate At, whose
attributes are: ?i, ?x, ?y and ?z.

Figure 5.3: An example of PDDL predicates definition following
an equal action-based and timeline-based form.

– A PDDL temporal action is named as (:durative-action State-
Variable_Action). PDDL-Lib translates it as the token Action
belonging to StateVariable. Figure 5.4 shows an example of
this formulation. For instance, UAVBase is the state variable
of the action TakingOff.

Figure 5.4: An example of a PDDL temporal actions definition
following an equal action-based and timeline-based
form.

• The effects file allows PDDL-Lib to understand the actions plan
generated by the PDDL Planner, and to build a timelines plan
following the nomenclature of the domain file. As we do not
guarantee a full translation from the PDDL domain file, we cre-
ate the effects file to define an effect token for every temporal
action defined in the PDDL domain file. That is, this file declares
the effect and parameters of every temporal action as a statement
with the format (StateVariable_Action M StateVariable_Predicate),
where Predicate is the effect of Action and M is the number of



5.3 the aries autonomous controller 125

parameters that PDDL-Lib has to assign to StateVariable_Predicate
from StateVariable_Action. Figure 5.5 shows an effects file exam-
ple, where UAVBase_At is the effect of UAVBase_TakingOff, and
PDDL-Lib captures the last four parameters of this last predi-
cate: ?i, ?x, ?y and ?z shown in Figure 5.4. Another example,
UGVBase_At is the effect of UGVBase_GoingTo, and it gets the
last two parameters ?x and ?y, which represents the destination
location.

Figure 5.5: An example of an effects file for a heterogeneous simple
UGV-UAV system example.

Once the sequence of tokens has been built for every state variable,
PDDL-Lib needs to get the duration of every token to complete the
timeline of every state variable. In this way, PDDL-Lib captures this
duration from the plan computed by the PDDL Planner.

5.3 the aries autonomous controller

The objective of ARIES [277] is to provide an adjustable controller for
deploying cooperative heterogeneous/homogeneous robot teams. In
this way, we have implemented a multi-agent architecture based on
the T-REX system and supported on standardized technologies for en-
abling compatibility with other robotic systems (flexible), adaptability
to different problem domains (scalable) and to be qualified to respond
to some robot failures (fault tolerant).

Figure 5.6: The ARIES architecture follows a hierarchical scheme using the
hybrid leader-follower approach, where there is a leader agent
and one or more follower agents.

ARIES follows a hierarchical scheme using the hybrid leader-follower
approach in which the leader centralizes the cooperative deliberation
process of the whole robot team, and then, it coordinates the execu-



126 an autonomous controller for cooperative multi-robot systems

tion of each follower. The ARIES architectural concept is illustrated
in Figure 5.6. The follower(s) execute(s) the goals received from the
leader and report the results to it, as well as monitor(s) and repair(s)
(if needed) their status in order to be fully operative for the team.

5.3.1 The hierarchical execution flow

ARIES represents the effort of bringing T-REX and the leader-follower
scheme together by splitting the control architecture in hierarchical
agents, where each T-REX agent is executed on its own robotic plat-
form. This effort results in two types of T-REX agents: the leader agent
and the follower agent. Following the T-REX design criteria, both
leader and follower agents have been built under hierarchical layers.

At the leader agent’s top-level, a deliberative layer provides the co-
operative planning capabilities. At the follower agent’s top-level, a
deliberative layer provides planning capabilities for supporting fault
tolerant behaviours, expressed as series of rules that trigger reactive
behaviours to overcome non-nominal situations.

Figure 5.7: Basic execution flow in ARIES. Both leader and follower agents
have been built under three hierarchical layers: the deliberative,
the cooperative and the executive layer.

At middle and bottom levels, both agents have a cooperative layer
for synchronizing tasks execution and an executive layer for execution
control and monitoring. Therefore, for a given plan provided by the
deliberative layer, the leader agent has to publish the mission goals to
the executive layer. If the target is a follower agent, the cooperative layer
forwards the goal to the executive layer of the corresponding follower.
Then, the executive layer is in charge of the action execution and mon-



5.3 the aries autonomous controller 127

itoring. This is the execution cycle followed in ARIES as shown in
Figure 5.7. In this description, we do not have included the functional
layer used to control the robotic platform. Currently, the functional
support is directly integrated in the T-REX agents. However, it is possi-
ble to easily extend the T-REX agents to use different technologies for
the functional layer such as GenOM [278] or ROS [279] for instance.

Regarding the fault tolerant system, ARIES is able to control spe-
cific non-nominal states. On one hand, the leader agent can manage
unachieved goal(s) and communication failures. For unachieved goals,
the leader follows a two steps procedure: first, the executive layer iso-
lates the event and tries to execute a reactive rule that may solve the
issue; if the first step fails, the second step followed by the executive
layer is to forward the issue to the deliberative layer. This last implies
a replanning and tasks reassignment to the followers. In such case,
the followers replace their previous plan with the new plan given by
the leader. For the communication failure, the leader waits for any
heartbeat signal from any follower. If none follower sends a heartbeat
signal, the leader performs replanning and tries to achieve the mission
goal on its own.

On the other hand, the follower agent can manage the unachieved
goal and communication failure in a different way. For the unachieved
goal state, the cooperative layer of the follower reports the error to the
deliberative layer of the leader, asking for a new plan considering the
follower(s) current states. For the communication failure, there is a
contingency plan when the leader is missing. In this situation, the
followers enable an operational mode to communicate with its nearest
follower partner, and so, to randomly select a new leader. This is an
initial approach and it is not a complete failure management. Building
a complete failure management system is an on-going research work.

(a) The Leader Agent in ARIES. (b) The Follower Agent in ARIES.

Figure 5.8: T-REX agents in ARIES following the leader-follower approach.

5.3.2 The leader agent

The leader agent is the T-REX agent that provides the cooperative
planning capabilities to an ARIES instance. It is made up of three



128 an autonomous controller for cooperative multi-robot systems

T-REX reactors, each one placed in a different layer as shown in
Figure 5.8a: the Planner Reactor in the deliberative layer, the COOP
Reactor in the cooperative layer and the Generic Executive Reactor (GER)
[280] in the executive layer. In the following, we describe the functional
scope of each layer.

At the top level, the deliberative layer is formed by the Planner
Reactor, a PDDL-based reactor which uses two input files to represent
the world knowledge: the domain and the problem file (see Figure 5.9).
The domain file contains the description of the possible state variables
that can be achieved by every robotic system in the team as shown
in section 5.2. The interaction among the state variables of different
robotic systems into the domain file defines the cooperation model
of the robot team. The problem file includes the initial facts defining
the starting tokens of every state variable for each robotic system
in the team and, also, the high-level goals we want to achieve. This
information is used by a PDDL planner to find a sequence of tokens
which allows the cooperative robot team to reach the goal states
from their initial states. Also, the Planner Reactor declares every state
variable of the leader and every follower as external. The externals of
the leader are used by the Planner Reactor to publish goals to the GER
(B.1 in Figure 5.9) as we explained in section 5.1.

We have integrated the Unified Path Planning and Task Planning
Architecture (UP2TA) [281] as the PDDL planner of ARIES. UP2TA is a
planner that interleaves path-planning and task-planning for mobile
robotics applications. Nevertheless, ARIES can be easily adapted to
different PDDL planners, such as Fast Forward [282] or Subgoal Parti-
tioning Planning [283], thanks to the use of an standardized planning
language and the support provided by the PDDL-lib.

The Planner Reactor, as a deliberative reactor explained in sec-
tion 5.1, has a certain latency λ > 0 and look-ahead π > 1 within the
timing model of the T-REX engine. These values are a matter of design
of the user. Then, attending to the T-REX notation, its dispatching
window HD can be stated as the Equation 5.1.

At the middle level, the cooperative layer is formed by the COOP
Reactor, a T-REX reactor whose objective is to carry out the cooperation
with the followers. Figure 5.9 shows that the COOP Reactor deploys
a TCP/IP server to connect with every follower and it declares every
state variable of every follower as internal. Then, when a new sequence
of tokens has been planned, the Planner Reactor sends the follower’s
goals to the COOP Reactor (A.1 in Figure 5.9). The COOP Reactor
forwards the goals to the COOP Reactor of the corresponding follower
(A.2 in Figure 5.9) for execution and, so, it waits (Leader Waiting)
for the reception of the follower observation (A.5). Then, it reports
this observation to the Planner Reactor (A.6). This layer manages the
communication failure, where the leader waits for any heartbeat signal
from any follower. If a time threshold (defined by the user) is reached



5.3 the aries autonomous controller 129

Figure 5.9: Mandatory configurations and basic work flows to deploy the
cooperation in ARIES. The cooperation among two T-REX agents
is carried out via observations and goals. The normal black lines
represent the communication flow of observations and goals. The
dashed black lines represent waiting states in the coordination
among different agents. The red dashed lines represent different
failure states that a reactor can communicate to other reactor.

and none follower had sent the heartbeat signal, this layer reports the
wrong state to the Planner Reactor to perform replanning.

At the bottom level, the executive layer is formed by the GER, an
execution module designed to be adaptable to any robotic domain.
Figure 5.9 shows that the GER declares every state variable of the
leader agent as internal. Its role is to dispatch the tokens, of its in-
ternal state variables, to the functional layer of the robotic platform.
Then, when the goal has been reached, it sends the observation to the
Planner Reactor (B.2 in Figure 5.9). It provides an interface between the
Planner Reactor and the functional layer without creating knowledge
dependencies between them. Also, it has the capability to monitor the
tokens execution. This layer manages the unachieved goal failure, in
which the GER sets a fail-safe mode. In this mode, it tries to repair the
error as soon as possible by isolating the event from the whole system
and triggering a reactive rule to solve it in a short time. The fail-safe
mode requires a configuration file where the user has to define the
reactive rule to trigger for every unachieved goal. For instance, if the
leader’s camera cannot take a picture, the user can set a reactive rule
to reboot the camera that might solve the issue. Thus, it avoids to
report to the Planner Reactor the failure avoiding collateral effects.
However, if the failure persists after executing all possible recovering
rules (Leader Failure in Figure 5.9), the GER notifies to the Planner
Reactor, asking for replanning that may affect the whole mission.

The GER is considered as a reactive reactor, where the latency λ = 0
and the look-ahead π = 1 within the timing model of the T-REX
engine. Then, its dispatching window HD can be defined as follows:



130 an autonomous controller for cooperative multi-robot systems

HD = [τ + λ, τ + λ + π] =

= [τ, τ + 1]→ λ = 0, π = 1 (5.2)

5.3.3 The follower agent

The follower agent is a T-REX agent which provides a wide range of
functional capabilities in order to accomplish cooperative missions.
These capabilities depend on the deployed robotic system. It is made
up of three T-REX reactors, each one placed in a different layer, as
shows Figure 5.8b: the Recover-Reactor (R-Reactor) in the deliberative
layer, the COOP Reactor in the cooperative layer and the GER in the
executive layer. As we did with the leader agent, the functional scope
of each layer is depicted in the following.

At the top level, the deliberative layer is formed by the R-Reactor,
a T-REX reactor focused on managing the communication failures.
R-Reactor is called only when the communication between the leader
and follower agent is lost (Follower Failure in Figure 5.9). As well as
the Planner Reactor of the Leader Agent, R-Reactor uses a PDDL
domain file to model behaviours for recovering the robotic system
from failures, e. g., communication problems. Also, it uses the PDDL-
lib to translate the sequence of actions into tokens over state variables
with temporal constraints ready for execution. The R-Reactor declares
every state variable of the follower agent as external, in order to be
aware of opportunistic system failures and to act accordingly (C.2 in
Figure 5.9) when a system recovery is required.

The PDDL planner used by the R-Reactor is UP2TA. The domain
file contains the description of every possible failure and the sequence
of tokens required to recover from them. The problem file includes the
initial facts defining the initial state of the robotic system and it does
not contain goals because its initial state does not have failures. A goal
into the problem file means that the robotic system is stuck in a failure
state and it requires the planning of a sequence of tokens to deal with
it. Thus, it is a deliberative reactor, so it may require a certain latency
λ > 0 and look-ahead π > 1 for the deliberation process. These values
are a matter of design and its dispatching window HD can be defined
as shows Equation 5.1.

At the middle level, the cooperative layer is formed by the COOP
Reactor, whose objective is to enable the coordination with the leader
agent. It deploys a TCP/IP client with a unique identifier into the
leader agent and, it declares the state variables of the follower as
externals. The COOP Reactor receives the goals from the leader agent
(A.2 in Figure 5.9) and, it forwards them to the GER (A.3) for their
execution. Then, it waits (Follower Waiting) until a goal has been
executed properly in the follower agent. So, when the COOP Reactor
has received the observation (A.4) from the GER, it forwards the



5.4 experimental demonstration in the v-rep simulator 131

observation through the TCP/IP link (A.5) to the leader agent. If the
communication with the leader agent is lost, it reports the failure
to the R-Reactor (Follower Failure) for triggering the communication
failure recovery.

At the bottom level, the executive layer is formed by the GER, im-
plemented in the same way as the leader agent but with different
settings, i. e., it declares, as shows Figure 5.9, the state variables of the
follower agent as internals. Its role is to dispatch the tokens over its
internal state variables, as goals requested by the COOP Reactor or the
R-Reactor, to the functional layer of the robotic platform. Also, it has
the capability to monitor the tokens execution over its internal state
variables. If the unachieved goal failure arises, the GER sends every
failure to the COOP Reactor to forward them to the leader agent (as
in A.4, A.5 and A.6 in Figure 5.9). Then, the follower waits for a new
plan from the leader.

5.4 experimental demonstration in the v-rep simulator

In this section we present the ARIES demonstration for a simulated
study case of the ECU-CSURP discussed in chapter 3. Specifically, the
study case is framed on the ECU-CSURP extension for R3 Euclidean
spaces presented in subsection 3.3.1 and, a heterogeneous simple
UGV-UAV system. Nevertheless, instead of executing TERRA, we
integrated the UP2TA planner because of the following two reasons:
UP2TA interleaves path planning and task planning, whereas TERRA
is only a path planner; and UP2TA is a PDDL planner, which allows
us to design different exploration paradigms for comparing, such as
the one integrated in the LARES system [284, 285]. The LARES system
represents the initial steps for deploying ARIES in a real application.
For the demonstration, we tested ARIES over a nominal scenario
(i. e., there are no anomalous events during the mission) simulated in
the Virtual Robot Experimentation Platform (V-REP) framework [286].
Also, we designed a particular virtual reality application [287] for the
assessment of the UP2TA planner and the generated mission plan. This
application provides a three-dimensional view of the path generated
in real Mars surfaces. Furthermore, we present some computational
results of the ARIES execution in several scenarios arisen from this
study case, considering different complexity levels in terms of tasks
number and energy capacity.

5.4.1 Study case. Towards a future Mars exploration with a heterogeneous
simple UGV-UAV system

This study case is based on a future Mars exploration that arises from
the scientific needs to reach complex targets on Mars, such as taking
pictures around a cliff, a crater or a mountain ridge, which the current



132 an autonomous controller for cooperative multi-robot systems

UGVs cannot accomplish due to safety and operational constraints.
As well as the ECU-CSURP formulates in section 3.1, the UAV is in
charge of reaching these targets. However, UAVs are robotic systems
with limited energy resources to complete large duration missions on
its own.

This future Martian exploration follows the cooperation synergy
exploited in section 3.2, where the UGV is a moving charging station
carrying the UAV between charging stops, such as a cliff edge sur-
roundings, so the UAV can take off and obtain pictures around the cliff
without flying long distances. Also, the UGV provides autonomous
recharging to the UAV during the charging stops. In such mission
proposal, a heterogeneous simple UGV-UAV system executing ARIES
would be empowered to accomplish long-term explorations with a
high level of autonomy. This mission represents just one of many
future Mars missions examples.

Figure 5.10: Experimental scene simulated in V-REP and used for the experi-
mental demonstration of ARIES. The DTM if the one used for
the ECU-CSURP instance presented in subsection 3.3.1.

Following the described Mars exploration, the ARIES instance de-
ployed for this demonstration is shown in Figure 5.11. It defines the
UGV as the leader agent and the UAV as the follower agent. For
the UGV, we have modelled a PDDL domain and problem with the
exploration mission. For the deliberative layer of the UGV, we have
modelled the UGV’s locomotion system through the state variable
UGVBase and the UGV’s on-board charging station as UGVStation. For
the UAV, we have modelled the locomotion system with the UAVBase
state variable, the zenithal camera with UAVCamera and the energy
resource with UAVEnergy. The UAV energy resource allows us to
model the boundaries that the UAV can reach from a take off point.
Please note that this demonstration only considers a nominal scenario
without anomalous events, so fail-safe configurations have not been
considered.



5.4 experimental demonstration in the v-rep simulator 133

The experimental scene was simulated in the V-REP, a flexible
and scalable simulation framework. V-REP allows to use different
programming techniques to implement the controllers (kinematics or
dynamics, for instance) of the robotic systems. Moreover, it provides
functionalities to deploy highly customizable scenes. Our experimental
scene consists of a specific area extracted from a real Mars DTM as
Figure 5.10 shows, and the simulated heterogeneous simple UGV-UAV
system shown in Figure 5.11. Also, V-REP provides a remote interface
to interact with an external entity via socket communication. We take
advantage of this interface to set the communication link between
ARIES and V-REP. In particular, the GER of the leader and follower
agents were set up to communicate with the V-REP remote interface
of each robotic system, as shows Figure 5.11.

Figure 5.11: The ARIES instance deployed for the experimental demonstra-
tion in the V-REP simulator. The simulated UGV is the leader
agent and the simulated UAV is the follower agent. The V-REP
Remote Interface allows the communication between ARIES and
V-REP.

The demonstration consists of acquiring different samples in a Mars
environment. As the ECU-CSURP states, these robotics systems have
been modelled as Dubins vehicles [247]. Also, we assume that the UGV
does not have energy constraints, so it has enough energy resources to
complete the exploration mission. Instead, the UAV energy constraint
has been modelled as the maximum flight time with a high capac-
ity battery fully charged. The nominal scenario used for the ARIES
demonstration is defined as follows:

- Nominal. The heterogeneous simple UGV-UAV system starts
at the home location with the UGV carrying the UAV, which
has full battery. The objective is to take 6 pictures (TP1-6) (see
Figure 5.12a). A high capacity battery allows the UAV to reach



134 an autonomous controller for cooperative multi-robot systems

farther targets without performing too many charging stops.
Figure 5.12 shows different pictures taken during the simulation.

(a) Experimental scene in V-REP. (b) Taking a picture (TP2) of the sur-
face.

(c) Taking a picture (TP5) of a mountain
hillside.

(d) Taking a picture (TP6) of the sur-
face.

Figure 5.12: Demonstration of ARIES for the described nominal scenario.
Figure 5.12a shows an instance with six target points (TP1-6)
distributed around the Mars surface. The UGV carries the UAV
through charging stops (CS1-4 in green color) to allow the UAV
to reach the TPs (blue color) without running out of energy.

5.4.2 Simulation results

The simulation starts by defining the goals and the initial state of the
nominal scenario, i. e., reaching the targets TP1-6 starting from the
home location. Once the UP2TA planner of the leader agent receives
the goals, it generates a complete plan to achieve one-by-one the
targets. Figure 5.13 describes a part of the plan for reaching TP1 and
TP2 from the charging stop CS1, as it is graphically represented in
Figure 5.12b. Then, the generated PDDL plan is forwarded to the
Planner Reactor.

The Planner Reactor is in charge of translating the planned actions
into a timeline-based plan1 as explained in section 5.2. The resulting
timeline-based plan translated from the PDDL plan is shown in Fig-
ure 5.14. This timeline-based plan contains the PDDL actions (A1-11)
plus the initial states (green boxes) modelled in the PDDL problem
and the effect tokens (gray boxes) stated in the effects configuration
file. In this way, each state variable has a complete temporal evolution
from the beginning to the end of the time horizon. Now, the new plan

1 The computational cost of the translation process of the PDDL-lib is negligible respect
to the controller execution.



5.4 experimental demonstration in the v-rep simulator 135

Figure 5.13: Partial PDDL plan to reach TP1 and TP2 from CS1 in the nominal
scenario. The start and duration parameters are represented in
seconds. The attributes X, Y, Z follow the format Name_Value.

Figure 5.14: Partial timeline-based plan translated from the partial PDDL
plan in Figure 5.13 for the leader and follower agents. The state
variables are represented on the left side. The green tokens rep-
resent the initial state of the mission. The blue tokens represent
the actions taken from the PDDL plan. The gray tokens are the
effects of the tokens stored in the effects configuration file. The
start of the mission is denoted by t, and the execution frontier is
denoted by τ.

can be executed by an architecture which follows the timeline-based
paradigm such as ARIES.

Once the plan is translated, the Planner Reactor starts the execution
token by token. Figure 5.15 shows the execution flow for achieving
TP1 and TP2. First, we observe that every planned token has its own
effect token, e. g., the TakingPicture token has the Idle effect. Thus, every
token execution in a state variable implies an effect, which means that
ARIES requires two tokens exchange to carry out the coordination
between the agents. Second, we can observe that both agents represent
the UAVCamera state variable evolution, which means that both agents
share information in order to accomplish a proper coordination. This
information sharing enables the design of failure recovery models
for future scenarios where both agents coordinate a joint plan to
solve anomalous situations. Finally, we observe how the dispatching
process has been split by a coordination process in which both agents
communicate to hold a truthful coordination.



136 an autonomous controller for cooperative multi-robot systems

Figure 5.15: Execution flow for taking the pictures TP1 and TP2 whereas
the UGV is at CS1. Green tokens represent the initial states.
Blue tokens represent the planned actions to be executed. Gray
tokens are the effects of accomplishing the planned actions. The
execution frontier is denoted by τ.

The current coordination process is an essential step which requires
a future deeper assessment to provide ARIES a more robust execution
against system failures. Currently, ARIES is just able to manage the
communication lost and unachieved goal failures states, which is not
enough to provide a reliable autonomous controller. A possible way
to achieve a robust failure management system could be to deploy a
new T-REX reactor on every ARIES agent (leader and follower(s)) that
executes its own planner with the world knowledge to deal with a
wide range of failures. The current coordinated execution will keep
informed this reactor of every action execution, so it will be able to
execute the suitable contingency plan.

The computational results of executing ARIES over the nominal sce-
nario are presented in Table 5.1, showing the communications between
agents for coordination (expressed in number of tokens exchanged),
the charging stops performed by the UAV to reach the targets, the
deliberation time required by UP2TA to obtain a plan, the simulation
time taken by V-REP to perform the simulation and the distances
travelled by the UGV and the UAV.

We can observe that ARIES performs 64 communications between
the leader and the follower to accomplish the mission. As we can
appreciate in the partial plan shown in Figure 5.14, 8 actions exe-
cution (blue boxes) in the follower agent require 8 effect tokens, so
the complete nominal scenario with 32 actions requires a total of 64

communications. The UAV’s high capacity battery allows the hetero-



5.4 experimental demonstration in the v-rep simulator 137

geneous simple UGV-UAV system to reach the 6 targets by computing
only 4 charging stops (green boxes in Figure 5.12a).

Table 5.1: Experimental results of executing ARIES in the nominal scenario
and another three scenarios with different set-ups. #Com = number
of communication between agents, #CS = number of charging stops,
Dt = deliberation time required by UP2TA to obtain the plan, St =
simulation time taken by V-REP to complete the simulation, Fugv =
distance travelled by the UGV end Fuav = distance travelled by the
UAV.

#Com #CS Dt (s) St (s) Fugv (m) Fuav (m)

Nominal 64 4 25.2 459.9 138.6 125.5

Nominal L-C 70 6 27.8 469.6 146.8 71.4

Extended 128 8 40.3 668.1 152.1 168.2

Extended L-C 146 11 44.2 761.5 158.2 52.4

Additionally, we execute ARIES over scenarios derived from the
nominal scenario. The tested scenarios are described as follows:

- Nominal with low-capacity (Nominal L-C in Table 5.1). Starting
at the home location, the objective is to take 6 pictures. The UAV
has a lower battery capacity than the nominal, so it requires the
UGV to travel more distance in order to deploy the UAV closer
to the targets. Therefore, it is a slightly complex scenario than
the nominal, and so, the planner takes more time to compute a
plan.

- Extended nominal (Extended in Table 5.1). Starting at the home
location, the objective is to take 12 pictures (six pictures more
than the nominal). This scenario is a more complex than the
previous one from the planning perspective as it is required to
plan more targets.

- Extended nominal with low-capacity (Extended L-C in Table 5.1)
It is similar to the previous one, but the UAV has a lower battery
capacity. Thus, it represents a combination of the previous sce-
narios where the UGV needs to travel a longer distance to allow
the UAV to reach the targets, while the planner has to deal also
with a high number (12) of targets.

The results of executing the above scenarios are also presented
in Table 5.1. First, we can observe that the communications and the
charging stops are increased either by the task number or the battery
capacity. Second, the deliberation and simulation times experiment an
increment due to the scenario complexity. Finally, Fugv is higher in the
low-capacity scenarios because it is required to deploy the UAV closer



138 an autonomous controller for cooperative multi-robot systems

to the targets to allow it to reach the objectives without running out
of energy. This explains why Fuav is quite lower on the low-capacity
scenarios.

5.5 summary

Over the last two decades, autonomous controllers have proven their
efficacy to tackle problems in which robotic systems need a high level
of autonomy. The algorithms presented in chapter 3 and chapter 4 just
represent the decision-making process to overcome these problems,
so there are required complex entities, such as these autonomous
controllers, to execute and monitor those decisions. In this chapter, we
presented a research effort for bringing up an autonomous controller
with the ability to operate the cooperation of a multi-robot system. We
named this controller as ARIES, and it has been designed on the pillars
of T-REX, an autonomous controller originally designed by McGann
et al. [263] to control one and/or more robots from a centralized
single agent. In section 5.1, we reviewed and summarized the T-REX
controller, which we took advantage of to build ARIES. For instance,
we mentioned that T-REX follows the timeline-base paradigm to model
the execution of a robotic agent, but in section 5.2 we explained why
maybe it is better to use an action-based temporal paradigm instead.
This is why ARIES uses this paradigm. In section 5.3, we explained
the ARIES’s key structural elements, its execution cycle, and the main
properties we want to endow to our controller: flexibility, scalability
and fault tolerant. We could summarize ARIES as a hierarchical system
where the leader deliberates cooperative plans and coordinates the
follower’s execution, meanwhile each follower executes the received
actions and notifies the outcomes to the leader. Due to ARIES is
on its initial phase and the costs of conducting such experiments
with real robots are substantial, the experimental demonstration has
been carried out on a robotic simulator. Therefore, in section 5.4, we
analysed a particular study case and the first results on different
simulated scenarios.



Part III

T H E C O N C L U S I O N S





6
C O N C L U S I O N S & F U T U R E W O R K

This chapter summarizes the conclusions of this dissertation following
the order of the presented work. Also, the chapter ends by discussing
some future interesting research lines that may extend the research
here presented.

6.1 conclusions

Throughout the dissertation, we endeavoured to expose the reader to
the growing research interest in cooperative heterogeneous UGV-UAV
systems to tackle historical problems, such as the exploration and
last-mile delivery. As we have showed in the state of the art, this novel
approach has experienced an explosion in the literature during the
past decade because of the synergistic capabilities of these systems to
overcome such problems. Driven by this principle, we carried out the
research work explained at length in this dissertation.

We started our research by formulating an exploration problem
in R2 Euclidean spaces, also called as the ECU-CSURP, that could be
addressed by a heterogeneous simple UGV-UAV system. This explo-
ration problem stands out because of the definition of a large-scale area
where the robotics systems have neither enough energy nor functional-
ities to carry out the whole exploration, and so, they need to cooperate
with the others to achieve the goals. In order to overcome this problem,
we followed the existing UGV-UAV cooperation paradigm to design
and implement a novel path planning algorithm. This path planning
algorithm was named as TERRA, and it consists of splitting the explo-
ration problem into five sub-problems (divide-and-conquer). In this
way, TERRA devises a sequential set of stages, in which each stage
solves a particular sub-problem, and then, it computes a cooperative
path planning solution to the ECU-CSURP. We demonstrated the strong
performance of the algorithm exploiting a cooperation paradigm in a
heterogeneous simple UGV-UAV system. Also, we revealed that the
farthest distance the UAV can travel and the clustering level, are the
key features that need to be considered to maximize its performance.
Furthermore, we extended TERRA for exploration problems in cumber-
some terrains, such as high-hill or uneven areas. For that, we updated
the ECU-CSURP to R3 Euclidean spaces, and then, we updated the first
and third stages of TERRA and we added a new stage to compute the
three-dimensional UGV’s path. Therefore, we analysed the effects of
executing TERRA in R3 scenarios from a safety perspective. We evalu-
ated the performance searching for secure locations (or legit vertices)

141



142 conclusions & future work

from where to reach the target points, and also, the performance with
the new three-dimensional path planning.

We continued our research work by leveraging the TERRA algorithm
to overcome the last-mile delivery problem with a heterogeneous mul-
tiple UGV-UAV system. This problem is being under study by the
logistics companies since the beginning of the century. However, due
to the exponential growth of deliveries experienced by the e-commerce
companies, the last-mile delivery problem is nowadays a cutting-edge
research topic. In this way, we formulated a generalization of the
last-mile delivery problem, called as the mUCVLMP, which objective is
to minimize the total delivery time under specific constraints that are
not properly defined in the literature. Then, we introduced the task
planning algorithm named as COURIER. This algorithm devises the
same sequential set of stages than TERRA, but implements a completely
new fifth stage that is able to compute a task planning solution. As
well as the task planning capabilities, the main features of COURIER

are the possibility of adding more UAVs to the solution and perform-
ing parallel deliveries by the UAVs, thanks to a novel geometrical
rendezvous method. The experimental evaluation was carried out
over a broad suite of instances with a different number of available
UAVs and different UAV’s configurations. Also, these configurations
were tested for different number of parcels. The results showed a
good behaviour, demonstrating that there is not need for expensive
UAVs with a high capacity battery to cover a large area, and that each
instance configuration presents a particular sub-optimal number of
UAVs from which the objective function is minimized. Also, we anal-
ysed its performance by comparing it with the mFSTSP [179] approach.
This approach deploys a similar heterogeneous multiple UGV-UAVs
system, but it devises a different cooperation paradigm. This compari-
son demonstrated that the cooperation paradigm under study is not
always the best solution, and even the UGV-UAV cooperation may be
ineffective for some instances. But, it also showed a great potential
because of the minimization of both the UGV and UAV travelling
times, which could make it effective for real applications.

At this point, we demonstrated that the same cooperation paradigm
integrated in TERRA and COURIER, present an overall good perfor-
mance for both problems, which makes the heterogeneous (simple or
multiple) UGV-UAV cooperation a feasible paradigm in computational
terms. Nevertheless, these algorithms are not capable by themselves to
fully take control of a robotic system. Instead, autonomous controllers
are built for that purpose. In this direction, our research concludes
with our efforts for designing and implementing a novel autonomous
controller, called as ARIES, to exploit any kind of cooperation in a
heterogeneous (simple or multiple) robotic system, such as the co-
operation paradigm implemented by TERRA and COURIER. The ARIES

controller is a decentralized architecture built on the existing TREX



6.2 future lines of work 143

system. We can briefly define ARIES as a flexible, scalable and fault tol-
erant controller which follows a hierarchical scheme where the leader
deliberates cooperative plans and coordinates the followers execution.
We want to point out that ARIES represents our initial research effort to
build a complete robust and feasible autonomous controllers. Even so,
we evaluated the architecture in simulated scenarios, but with initial
tests on real robotic platforms.

6.2 future lines of work

The work described in this dissertation suggests several extensions
and directions for future work. Here, we review some possibilities for
the work presented on each chapter.

Improving efficiency of TERRA for on-line path planning
applications

Currently, the five stages of TERRA make it computationally efficient
for off-line path planning, where an instantaneous response time is
not required. Nevertheless, TERRA is not prepared for on-line path
planning applications which demands a short response time. Even so,
results show evidence of several ways to reduce the computational
time of TERRA. One straightforward way could be to implement a
branch-and-bound algorithm to solve the UAV’s path in the fifth stage,
instead of the search algorithm currently implemented. The literature
about the TSP is extended, and it is encouraging the idea of evaluating
the current performance against other branch-and-bound algorithms
such as the Lin–Kernighan heuristic [141, 288] for the generalized
symmetric and asymmetric TSP. As far as we know, the Lin–Kernighan
heuristic is one of the strongest and successful heuristic for the TSP, so
it could help TERRA to drastically reduce its computational time, and
so, to be feasible for on-line path planning.

Multi-objective optimization against TERRA

We have shown that the ECU-CSURP consists on minimizing the
UGV’s and UAV’s travelling distance. But, we can clearly observe
that the ECU-CSURP presents a multi-objective optimization problem.
The current TERRA algorithm addresses this problem from a single
objective perspective. That is, it strategically executes a sequence of
stages to minimize first with UGV’s travelling distance, and secondly,
the UAV’s travelling distance. Aiming to explore another path to
minimize the objective function of ECU-CSURP, it may be interesting
the modelling of a new algorithm combining clustering capabilities
with multi-objective optimization. That is, a new sequence of stages,
where the first and second stages are solved with other clustering



144 conclusions & future work

algorithms commonly used today for machine learning, such as k-
means, and the next stages as a multi-objective optimization problem.
Evolutionary algorithms [289] are a trending research topic for their
good behaviour in multi-objective optimization problems. In this way,
it would be interesting to evaluate the Pareto optimal solutions against
the solutions given by TERRA.

A self-adaptive procedure of cooperation policies in COURIER

The geometrical rendezvous method and the arithmetic solver of
COURIER describe a particular way of solving the time entanglements
of vertices, that is, a particular cooperation policy to solve every
complex combination of vertices. For instance, we have decided that
the UAVs waiting for landing have the priority to land over the UAVs
waiting for taking off in a shared vertex. Nevertheless, the current
cooperation policy may not be the most efficient solution for all kind
of time entanglements. In this way, it may be efficient to let the UAVs
take off before the others land. Hence, an encouraging research line is
to define an heuristic that helps the memetic algorithm to understand
the problem, and then, choosing the most appropriated cooperation
policy in each case. A hypothesis is that an algorithm with different
cooperation policies available may outperform the current COURIER

version with just one static policy.

Analysing COURIER for other related problems

At present, COURIER aims to solve the mUCVLMP, which is a general-
ization of the last-mile delivery problem. But, its robust and reliable
design makes it suitable to address several well-known problems in the
literature demanding heterogeneous multiple UGV-UAV systems. For
instance, it’s very attractive to us the possibility of adapting COURIER

for vital supply in catastrophic areas, where a quick response is re-
quired to supply both medicine and food in hard access areas. Also,
we would like to evaluate the performance of COURIER in search & res-
cue scenarios, where minimizing the time covering an area as well as
the capabilities provided by the UGV-UAV cooperation paradigm may
result very useful. Another possible application could be industrial or
neighbourhood patrolling, where a group of UAVs along a UGV are
able to persistently patrol a large area in minimal times. These are just
some examples of numerous scenarios where COURIER might deliver
a good performance.

Swarm behaviour among agents in ARIES

We like to think that leadership should be carefully taken into ac-
count. Sometimes, the leader can fall into the false premise that what



6.2 future lines of work 145

he does is best for the team at the time. Here, we agree to reject this
premise, and to believe that leadership should bring the capability
to accept that co-workers may be right at some point. In some way,
this dissertation promotes the cooperation as the most efficient way to
address different problems. In this sense, it is encouraging integrating
swarm behaviour into ARIES, which makes the robotic system follow-
ing a desired collective behaviour following multi-objective purposes.
Besides, the comparison between PDDL planning and swarm systems
is a current research topic.





Part IV

A P P E N D I X





A
E X P E R I M E N TA L S E T T I N G F O R T H E T E R R A
E VA L UAT I O N

In order to perform the evaluation of TERRA presented in section 3.4, a
specific experimental setting was required. In the following, we present
a random map algorithm to generate problem instances and a tuning
stage where we set up the parameters of the genetic algorithm to
obtain a reasonable performance during the experimental evaluation.

a.1 generating random maps using a gaussian distribu-
tion

We developed the random map generator showed in Algorithm 12 to
build ECU-CSURP instances. A ECU-CSURP instance is a target point
distribution which satisfies the problem statements (i-vi) described
in section 3.1. Each distribution controls the location of the target
points by the number of groups of closely located targets, i. e., by
clusters. The location of the target points belonging to the same cluster
is generated using a 2D Gaussian Distribution1 with a random cluster
center, and the parameters µ = 0 and σ = a ∗ R, where a ∈ (0.5, 2)
and R is the farthest distance the UAV can travel. Thus, we introduce
a standard deviation in a range of [R/2, 2R]. The random number
generation for the random center and a is controlled by the Suffle
seed (based on the current time has been selected) and the Mersenne
twister generator [290]. Therefore, our map generator relies on the
following well defined parameters:

• N: number of target points.

• R: farthest distance the UAV can travel in km.

• δ: number of clusters.

The random map generator creates a map ensuring that N target
points are distributed in δ clusters of N/δ target points following a
2D Gaussian Distribution inside an exploration area of a fixed size.
Figure A.1 shows a feasible ECU-CSURP instance whose parameters
satisfy the problem constraints. The (i) ECU-CSURP constraint is con-
trolled by R. N and R represent the (ii) and (v) constraints respectively.
The (iv) and (vi) constraints are controlled by placing a constant home
location (V0 in Figure A.1) for the whole experimentation. Also, the tar-
get points are distributed around an area satisfying the ECU-CSURP

1 https://es.mathworks.com/help/stats/normrnd.html

149



150 experimental setting for the terra evaluation

Figure A.1: A randomly generated ECU-CSURP instance. Note that the ECU-
CSURP statements (i-vi) are satisfied.

distance constraint {t ∈ T : d(V0, t) > R} 6= ∅ ((iii) constraint). Addi-
tionally, δ allows us to generate a broad random diversity of target
points distributions.

Algorithm 12 Random Map Generator

Require: A, N, R, δ

Ensure: T
1: {A: Exploration area in m2}
2: {T: Set of target points}
3: {rc: Random cluster center}
4: {ncls: Number of clusters}
5: T ← ∅
6: σ← a ∗ R
7: if N > 0 and A > 0 and δ > 0 then
8: ncls ← N/δ

9: rng(su f f le, twister)
10: while δ > 0 do
11: rc ← [A ∗ rand(1, 1), A ∗ rand(1, 1)]
12: a← (1.5) ∗ rand(1, 1) + 0.5
13: σ← a ∗ R
14: t← rc + normrnd(0, sigma, [2, ncls])

15: T ← T
⋃

t
16: δ← δ− 1
17: end while
18: end if
19: return T



A.2 tuning the genetic algorithm of the third stage 151

a.2 tuning the genetic algorithm of the third stage

The genetic algorithm described in subsection 3.2.4 requires a pa-
rameter tuning to allow us to characterise TERRA from a proper
performance perspective. The objective is to select the best parameter
setting minimizing the objective function 3.1 of the ECU-CSURP de-
scribed in section 3.1. A parameter setting is formed by the parameters:
population size (Ps), tournament size (Ts), mutation operator (Mo),
mutation rate (Mr), crossover operator (Co), crossover rate (Cr), elitism
size (Es). The mutation operator included into the parameter tuning
are: Flip, Swap and Slide. Also, the crossover operators included are:
Order Crossover (OX), Cycle Crossover (CX) and Order Base Crossover
(CBX).

The tuning process starts computing a fixed budget of solution
evaluations (Seval) to set a fair racing (which means to allocate the
same resources) among different parameters settings. For example,
an unfair racing would be to compare a parameter setting A with
Ps = 500 with a parameter setting B with Ps = 100, both running the
same number of generations (denoted as NG). In this case, A is given
five times more solutions evaluations than B, and therefore, A can
perform a much wider exploration, which is unfair. Thus, we denoted
Seval = NG ∗ Ps to act as a stopping criterion of the genetic algorithm
in the racing procedure. So, given a fixed Seval, the parameter setting
A and B will run a proportional NG = Seval/Ps according to its Ps.
Therefore, once Seval was fixed, the racing process could be launched
to select the best parameter setting. The results of the experiment are
publicly available on GitHub2.

For the Seval computing, we generated one hundred random maps
with N = 16 and one hundred random maps with N = 64. We
set a standard parameter setting following the De Jong and Spears
[84] guidelines: Ps = 500, Ts = 4, Mo = Flip, Mr = 0.1, Co = CX,
Cr = 0.9, Es = 1. Then, we run the algorithm one time per random
map, i. e., two hundred executions. Figure A.2 shows the results of this
experiment. It plots the mean values (min, max, average) of the fitness
function Fugv on each generation, for random maps with N = 16 (black
lines) and N = 64 (red lines). This convergence graph demonstrates
that NG = 35 is enough to compute the minimum fitness function.
However, it may exist instances, with a similar parameter setting,
whose convergence may be higher than 35 generations. In those cases,
the algorithm would fail in finding the minimum fitness function.
Consequently, we decided to set an offset until NG = 60 generations,
enough to minimize the objective function 3.1. Then, the fixed budget
computed was Seval = 60 ∗ 500 = 30, 000 solution evaluations.

For the racing process, we used the irace package [291]. irace per-
forms iterated racing procedures to automatically configure the genetic

2 https://github.com/FRopero/tuningGA



152 experimental setting for the terra evaluation

Figure A.2: Convergence graph plotting the mean values (min,avg,max) of
Fugv on each generation of the genetic algorithm. The black lines
are random maps generated with N = 16, and the red lines with
N = 64.

algorithm by finding the most appropriate setting, given a set of ran-
dom map instances and a specific parameters space. The parameters
space defines the range of allowed (and not allowed) values of each
parameter. Table C.2 shows the chosen parameters space for this rac-
ing.

Table A.1: Parameters space of the genetic algorithm used for the irace tuning
software. Percentages are referred to Ps.

Parameter Type Values

Ps Integer [100, 500]

Ts Integer {3, 6, 9, 12}

Mo Enum {Flip, Swap, Slide}

Mr Float [1.0%, 10.0%]

Co Enum {OX, CX, OBX}

Cr Float [90.0%, 99.0%]

Es Float [1.0%, 5.0%]

Then, irace performed a training experiment where it selected the
best four appropriate settings. Once the training was finished, it run
a testing experiment where the best four settings were computed.
We generated one hundred random maps with N = 16 for training
and one hundred more for testing. Figure A.3 shows at the bottom
table, ordered from left to right, the best settings ID = {2, 82, 417, 646}
found by irace. At the top box-plot, Figure A.3 shows the results of
executing each ID setting with each testing random map. We observe
that the four settings have an equal performance and we can choose



A.2 tuning the genetic algorithm of the third stage 153

any of them to tune our genetic algorithm. In particular, all of them
have a similar Ps, which means a similar NG. However, the higher is Ps

the higher are the selection pressure Ts and Mr. Also, we observe that
a low selection pressure Ts is balanced with a high elitism Es. Finally,
we set up the genetic algorithm with the best setting ID = 2.

Figure A.3: Results for the training and testing experiment. At the bot-
tom table, ordered from left to right, the best settings ID =
{2, 82, 417, 646} obtained in the training experiment. At the top
box-plot, the irace results for computing the best settings in the
testing experiment.





B
A D D I T I O N A L E X P E R I M E N T S O F T H E T E R R A
A L G O R I T H M

In this appendix we show additional statistical and computational
experiments carried out to support the experiments presented in
section 3.4.

b.1 statistical tests

One Way ANOVA tests were performed to demonstrate the statistical
significance of Lemma 3.4.1 (see Table B.1) and Lemma 3.4.2 (see
Table B.2) of Figure 3.8 in subsection 3.4.1. For the analysis, we applied
the anova1 function1 integrated in the MATLAB Statistics and Machine
Learning Toolbox. Both tables show the probability value (p-value)
obtained on each test. As a typical analysis, we used the standard
significance level α = 0.05 [292] to determine the statistical significance
of the samples. For instance, a p-value = 1.07× 10−17 in Fugv and δ = 8,
in Table B.1, shows the One Way ANOVA test result for Fugv with the
three groups of samples R = {1, 3, 9}. More details are available on
GitHub2.

Table B.1: One Way ANOVA tests results (p-value) for Fugv, Fuav and Ftotal
with the three groups of samples R = {1, 3, 9} and a fixed δ value
on each column.

δ = 8

R = {1, 3, 9}

δ = 4

R = {1, 3, 9}

δ = 2

R = {1, 3, 9}

Fugv 1.07× 10−17 1.59× 10−39 1.88× 10−34

Fuav 0.00× 100 0.00× 100 0.00× 100

Ftotal 7.38× 10−307 6.90× 10−272 8.76× 10−205

b.2 computational results

Extended computational experiments were performed for the TSPLib
instances [252]: bays29, eil51, eil76 and berlin52 (see Table B.3). These
instances have N = 29, 51, 76 and 52 respectively. We performed

1 https://es.mathworks.com/help/stats/anova1.html
2 https://github.com/FRopero/TERRA_Experiments

155



156 additional experiments of the terra algorithm

Table B.2: One Way ANOVA tests results (p-value) for Fugv, Fuav and Ftotal
with the three groups of samples δ = {2, 4, 8} and a fixed R value
on each column.

R = 9

δ = {2, 4, 8}

R = 3

δ = {2, 4, 8}

R = 1

δ = {2, 4, 8}

Fugv 1.08× 10−35 9.19× 10−92 2.69× 10−112

Fuav 7.83× 10−22 2.67× 10−13 7.45× 10−10

Ftotal 2.87× 10−43 2.65× 10−93 6.91× 10−110

a computational study with R = [4, 16, 64, 128] in km. The home
location selected was the first target point displayed on each instance.
The column headings are: Name (instance name), Type (weight type),
N (number of target points) R (farthest distance the UAV can travel in
km), Fugv (UGV’s distance travelled), Fuav (UAV’s distance travelled),
Ftotal (total distance travelled), #C (number of charging stops) and
Time (computational time in seconds). The distance travelled in EUC
instances is dimensionless, but the rest of them is in km, following the
notation of the TSPLib.

Table B.3: Additional TERRA computational results for TSPLib instances.

Name Type N R Fugv Fuav Ftotal #C Time

bays29 GEO 29 4 9535.1 224.0 9759.1 0 40.4

bays29 GEO 29 16 9679.8 656.1 10335.9 0 36.9

bays29 GEO 29 64 8927.0 3522.5 12439.5 0 37.3

bays29 GEO 29 128 8191.0 5708.4 13899.4 5 42.2

eil51 EUC 51 4 419.4 324.9 744.3 13 81.0

eil51 EUC 51 16 220.3 790.4 1010.7 20 335.7

eil51 EUC 51 64 0 729.3 729.3 5 9542.8

eil51 EUC 51 128 0 545.8 545.8 2 10279.0

eil76 EUC 76 4 510.1 542.7 1052.8 30 145.3

eil76 EUC 76 16 164.8 1143.5 1308.3 30 933.5

eil76 EUC 76 64 0 1279.6 1279.6 10 33333.0

eil76 EUC 76 128 0 746.9 746.9 2 40664.0

berlin52 EUC 52 4 10989.0 293.9 11282.9 0 84.8

berlin52 EUC 52 16 10393.0 1595.5 11988.5 3 83.4

berlin52 EUC 52 64 7757.9 4579.2 12337.1 14 110.6

berlin52 EUC 52 128 5758.8 8225.7 13984.5 20 178.0



C
E X P E R I M E N TA L S E T T I N G F O R T H E C O U R I E R
E VA L UAT I O N

In this appendix we show additional aspects in the experimental set up
for the evaluation of the COURIER algorithm presented in section 4.3.
First, we show our extension of the standard TSPLib [252] to generate
instances that can be used for the last-mile delivery problem. Second,
we introduce the energy functions implemented in COURIER to com-
pute the UAV’s endurance in time and distance terms as are calculated
by Murray and Raj [179], and so, to perform a fair comparison. And
last, we describe the tuning stage carried out to extract the best pa-
rameter configuration for the memetic algorithm executed in the fifth
stage of COURIER.

c.1 generating tsplib instances for the last-mile deliv-
ery problem

Nowadays, TSPLib instances are commonly used in the literature for
any kind of generalizations of the TSP. In fact, it is a common practice
that researchers extend this standard by introducing some particular
parameters related to their particular problem. This is usually a good
praxis because allows other researchers to evaluate their solutions
against the others easily. Then, due to the current exponential growth
in the last-mile delivery problem, we wanted to contribute to the efforts
of creating such standard for this problem. Therefore, we created
a standard to be able to execute instances by both algorithms in
section 4.3. In the following, we describe the additional parameters
introduced to create the extended format, and show an example.

- CUSTOMER_SIZE (integer): describes the number of parcels.

- AREA_SIZE (double) [m2]: describes the size of the area.

- DEPOT_LOCATION (string): defines the depot location. The
option we have used is FIRST_NODE_COORD, meaning that
the first coordinate in the NODE_COORD_SECTION represents
the depot location.

- TRUCK_SPEED (double) [m/s]: speed of the truck.

- DRONES_NUMBER (integer): number of available UAVs.

- BATTERY_CAPACITY (double) [j]: capacity of the battery in the
UAVs.

157



158 experimental setting for the courier evaluation

- PAYLOAD_CAPACITY (double) [kg]: maximum weight of the
parcel carried by the UAVs.

- TAKEOFF_SPEED (double) [m/s]: UAV’s speed for the take off
action.

- FLYING_SPEED (double) [m/s]: UAV’s speed for the normal
flying action.

- LANDING_SPEED (double) [m/s]: UAV’s speed for the landing
action.

- FLIGHT_ALTITUDE (double) [m]: altitude at which the UAVs
will fly.

- TAKEOFF_PACKAGE_CONSUME (double) [(W/(kg · m
s ))]: con-

sumption ratio of the UAVs during the take off stage carrying a
parcel.

- FLYING_PACKAGE_CONSUME (double) [(W/(kg · m
s ))]: con-

sumption ratio of the UAVs during the flying stage carrying a
parcel.

- LANDING_PACKAGE_CONSUME (double) [(W/(kg · m
s ))]: con-

sumption ratio of the UAVs during the landing stage carrying a
parcel.

- TAKEOFF_EMPTY_CONSUME (double) [(W/(m
s ))]: consump-

tion ratio of the UAVs during the take off stage without a parcel.

- FLYING_EMPTY_CONSUME (double) [(W/(m
s ))]: consumption

ratio of the UAVs during the flying stage without a parcel.

- LANDING_EMPTY_CONSUME (double) [(W/(m
s ))]: consump-

tion ratio of the UAVs during the landing stage without a parcel.

- SERVING_CUSTOMER_CONSUME (double) [W]: power con-
sumed by the UAVs delivering a parcel.

- WAITING_TOLAND_CONSUME (double) [W]: power consumed
by the UAVs waiting for landing.

- SERVICE_TIME (double) [s]: time taken to deliver a parcel.

- LAUNCH_TIME (double) [s]: time taken to manually prepare a
UAV for delivering (in case it is no fully autonomous)

- RECOVERY_TIME (double) [s]: time taken to manually recover
a UAV (in case it is no fully autonomous).

The above parameters complete the extension created to generate in-
stances of the last-mile delivery problem. Therefore, a possible TSPLib
extended instance is displayed as shows Listing C.1.



C.2 energy function in courier 159

Listing C.1: A TSPLib extended instance example.

CUSTOMER_SIZE: 10

AREA_SIZE: 600000000

DEPOT_LOCATION: FIRST_NODE_COORD

TRUCK_SPEED: 11

DRONES_NUMBER: 1

BATTERY_CAPACITY: 500000

PAYLOAD_CAPACITY: 5

TAKEOFF_SPEED: 15.6

FLYING_SPEED: 31.3

LANDING_SPEED: 7.8

FLIGHT_ALTITUDE: 50

TAKEOFF_PACKAGE_CONSUME: 11

FLYING_PACKAGE_CONSUME: 5.5

LANDING_PACKAGE_CONSUME: 11

TAKEOFF_EMPTY_CONSUME: 24

FLYING_EMPTY_CONSUME: 12

LANDING_EMPTY_CONSUME: 24

SERVING_CUSTOMER_CONSUME: 225

WAITING_TOLAND_CONSUME: 450

SERVICE_TIME: 60

LAUNCH_TIME: 60

RECOVERY_TIME: 30

NAME: N10A600U1HRHSG5-13

TYPE: TSP

COMMENT:

DIMENSION: 11

NODE_COORD_TYPE: TWOD_COORDS

DISPLAY_DATA_TYPE: NO DISPLAY

NODE_COORD_SECTION

0 0.5 0.5

1 14285.9193 15962.8645

2 3054.9104 16615.3197

3 6118.2725 11471.9719

4 2314.9767 14325.1381

5 20486.6988 15004.0793

6 16437.5189 20622.5049

7 7429.2655 19624.4376

8 14304.5491 23698.7242

9 13135.7456 7644.4759

10 8854.715 13421.2502

EOF

c.2 energy function in courier

The energy functions designed for the experimental setting in sec-
tion 4.3 are relevant to tackle a fair evaluation between the mFSTSP-h
[179] and COURIER. These functions leverage the work of Dorling et al.
[293] and Murray and Raj [179] devising a linear function depending



160 experimental setting for the courier evaluation

Table C.1: List of parameters used in the energy function to compute the
UAV’s endurance in distance and time terms for COURIER.

Name Decription Units

Eavail Battery capacity [J]

R Farthest travelling distance [m]

h Flight altitude [m]

tos Take off speed [m/s]

cs Cruising speed [m/s]

ls Landing speed [m/s]

To Take off time [s]

T fa Flying time to customer [s]

Td Service time [s]

T fb Flying time to UGV [s]

Tl Landing time [s]

αt Consumption ratio in take off with parcel [(W/(kg · m
s ))]

αc Consumption ratio in flying with parcel [(W/(kg · m
s ))]

αl Consumption ratio in landing with parcel [(W/(kg · m
s ))]

βt Consumption ratio in taking off without parcel [(W/(m
s ))]

βc Consumption ratio in flying without parcel [(W/(m
s ))]

βl Consumption ratio in landing without parcel [(W/(m
s ))]

Et Power consumed in take off [J]

E fa Power consumed in flying to customer [J]

Ed Power consumed in the delivery [J]

E fb Power consumed flying back to the UGV [J]

El Power consumed landing [J]

on the parcel weight, speed and operation time. We use this function
to determine the UAV’s endurance in time and distance terms as
described in section 4.1. Table C.1 shows the list of parameters used
in the functions.

First, we take the input parameters given at the experimental setting
in subsection 4.3.1, and implement the following Equation C.1 to com-
pute the UAV’s endurance in distance terms. Here, given a particular
battery capacity (Eavail), we compute the farthest travel distance for a
UAV R as the UAV’s endurance in distance terms, taking the payload
capacity (wp) as the maximum weight of a parcel as in Equation C.1.



C.3 tuning the memetic algorithm 161

To = h/tos

T fa = R/cs

T fb = R/cs

Tl = h/ls

Et = To · tos · (αt · wp + βt)

E fa = T fa · cs · (αc · wp + βc)

Ed = Td · γ
E fb = T fb · cs · βc

El = Tl · ls · βl

Eavail = Et + E fa + Ed + E fb + El (C.1)

Second, once we know R for a UAV (UAV’s endurance in distance
terms), we can use the previous equations to compute the maximum
travel time Ttrip for a UAV, which is the UAV’s endurance in time
terms. This is computed as follows:

To = alt/tos

T fa = R/cs

T fb = R/cs

Tl = alt/ls

Ttrip = To + T fa + Td + T fb + Tl (C.2)

c.3 tuning the memetic algorithm

As well as the genetic algorithm of TERRA, the memetic algorithm
described in section 4.2 (the fifth stage of the COURIER algorithm),
demands a parameter tuning to perform a proper algorithm evaluation.
Here, the objective is to select the best parameter setting that minimizes
the objective Equation 4.1. In this case, a parameter setting is formed
by the parameters: population size (Ps), tournament size (Ts), mutation
rate (Mr), blind crossover rate (BCr), heuristic crossover rate (HCr). In
the following, we provide an identical process to the genetic tuning
described in Appendix A, so we avoid to exhaustively explain all the
process for the shake of simplicity.

The first step is to compute a fixed budget of solution evaluations
(Seval) to set a fair racing, as we did in the genetic tuning before.
We already know that Seval = NG · Ps, where NG is the number
of generations. For the Seval computing we generated one hundred
random maps with N = 8. We set a standard parameter setting
following the same guidelines as in the genetic tuning: Ps = 300,
Ts = 4, Mr = 20%, BCr = 15%, and HCr = 10%. Figure C.1 shows
the mean (min, avg and max) values of the fitness function Ttotal . This



162 experimental setting for the courier evaluation

Figure C.1: Convergence graph plotting the mean values (min,avg,max) of
Ttotal on each generation of the memetic algorithm.

convergence graph demonstrates that NG = 10 is enough to compute
the minimum fitness function. Then, the computed fixed budget was
Seval = 10 · 300 = 3000 solution evaluations.

The second step is to perform the racing process to find the best
configuration of parameters. As well, we used the irace package [291],
which is in charge of finding the most appropriate setting, given a set
of random map instances and a specific parameters space. Table C.2
shows the parameters space for this racing.

Table C.2: Parameters space of the memetic algorithm used for the irace
tuning software. Percentages are referred to Ps.

Parameter Type Values

Ps Integer {100, 200, 300}

Ts Integer {5, 10, 15, 20}

Mr Integer {15%,30%,45%}

BCr Integer {10%,20%,30%}

HCr Integer {5%,10%,15%}

For the racing process, we run two procedures as well as we did for
the genetic tuning. A first training procedure, where random instances
are computed in order to get the best four configurations, and a second
testing procedure, where the selected best six configurations were
computed over random instances. Figure C.2 shows at the bottom table,



C.3 tuning the memetic algorithm 163

Figure C.2: Results for the training and testing experiment. At the bot-
tom table, ordered from left to right, the best settings ID =
{17, 18, 56, 67, 62, 66} obtained in the training experiment. At the
top box-plot, the irace results for computing the best settings in
the testing experiment.

ordered from left to right, the best settings ID = {17, 18, 56, 67, 62, 66}
found by irace. At the top box-plot, Figure C.2 shows the results of
executing each ID setting with each testing random map. We observe
that the six settings have an equal performance and we can choose
any of them to tune our genetic algorithm. In particular, all of them
have Ps = 300, Ts = 10, BCr = 20%, and so, the same Seval. Also, we
can observe that the main disparities come from the Mr and HCr, but
the mutation rate tends to increase whereas the heuristic crossover
tends to decrease. We attribute this effect to the computational time
differences between the two operators.





B I B L I O G R A P H Y

[1] Wolfram Burgard, Mark Moors, Cyrill Stachniss, and Frank E
Schneider. “Coordinated multi-robot exploration”. In: IEEE
Transactions on robotics 21.3 (2005), pp. 376–386.

[2] Arthur Richards, John Bellingham, Michael Tillerson, and Jona-
than How. “Coordination and control of multiple UAVs”. In:
AIAA Guidance, Navigation, and Control Conference and Exhibit.
2002.

[3] Mars 2020 Mission Perseverance Rover with the Mars Helicopter
Scout. https://mars.nasa.gov/mars2020/. Accessed: 05-01-
2020.

[4] Chase C Murray and Amanda G Chu. “The flying sidekick
traveling salesman problem: Optimization of drone-assisted
parcel delivery”. In: Transportation Research Part C: Emerging
Technologies 54 (2015), pp. 86–109.

[5] Sergio Mourelo Ferrandez, Timothy Harbison, Troy Weber,
Robert Sturges, and Robert Rich. “Optimization of a truck-
drone in tandem delivery network using k-means and genetic
algorithm”. In: Journal of Industrial Engineering and Management
(JIEM) 9.2 (2016), pp. 374–388.

[6] Phan Anh Tu, Nguyen Tuan Dat, and Pham Quang Dung.
“Traveling salesman problem with multiple drones”. In: Pro-
ceedings of the Ninth International Symposium on Information and
Communication Technology. ACM. 2018, pp. 46–53.

[7] Dorit S Hochbaum and Wolfgang Maass. “Approximation
schemes for covering and packing problems in image pro-
cessing and VLSI”. In: Journal of the ACM (JACM) 32.1 (1985),
pp. 130–136.

[8] Refael Hassin and Nimrod Megiddo. “Approximation algo-
rithms for hitting objects with straight lines”. In: Discrete Ap-
plied Mathematics 30.1 (1991), pp. 29–42.

[9] Martin Grötschel, Alexander Martin, and Robert Weismantel.
“The Steiner tree packing problem in VLSI design”. In: Mathe-
matical Programming 78.2 (1997), pp. 265–281.

[10] Michael R Bussieck, Thomas Winter, and Uwe T Zimmermann.
“Discrete optimization in public rail transport”. In: Mathematical
programming 79.1-3 (1997), pp. 415–444.

[11] Michele Monaci. “Algorithms for packing and scheduling prob-
lems”. In: Quarterly Journal of the Belgian, French and Italian
Operations Research Societies 1.1 (2003), pp. 85–87.

165

https://mars.nasa.gov/mars2020/


166 bibliography

[12] Rochdi Sarraj, Eric Ballot, Shenle Pan, Driss Hakimi, and Benoit
Montreuil. “Interconnected logistic networks and protocols:
simulation-based efficiency assessment”. In: International Jour-
nal of Production Research 52.11 (2014), pp. 3185–3208.

[13] Noam Nisan. “The communication complexity of approximate
set packing and covering”. In: International Colloquium on Au-
tomata, Languages, and Programming. Springer. 2002, pp. 868–
875.

[14] Hidehisa Nakayama, Zubair Md Fadlullah, Nirwan Ansari,
and Nei Kato. “A novel scheme for wsan sink mobility based
on clustering and set packing techniques”. In: IEEE Transactions
on Automatic Control 56.10 (2011), pp. 2381–2389.

[15] Fatih Deniz, Hakki Bagci, Ibrahim Korpeoglu, and Adnan
Yazıcı. “An adaptive, energy-aware and distributed fault-tolerant
topology-control algorithm for heterogeneous wireless sensor
networks”. In: Ad Hoc Networks 44 (2016), pp. 104–117.

[16] Howie Choset. “Coverage for robotics–A survey of recent re-
sults”. In: Annals of mathematics and artificial intelligence 31.1-4
(2001), pp. 113–126.

[17] Enric Galceran and Marc Carreras. “A survey on coverage
path planning for robotics”. In: Robotics and Autonomous systems
61.12 (2013), pp. 1258–1276.

[18] Onn Shehory and Sarit Kraus. “Task allocation via coalition
formation among autonomous agents”. In: IJCAI. 1995, pp. 655–
661.

[19] Brian P Gerkey and Maja J Matarić. “A formal analysis and
taxonomy of task allocation in multi-robot systems”. In: The
International Journal of Robotics Research 23.9 (2004), pp. 939–954.

[20] Jan Karel Lenstra, AHG Rinnooy Kan, and Peter Brucker.
“Complexity of machine scheduling problems”. In: Annals of
discrete mathematics. Vol. 1. Elsevier, 1977, pp. 343–362.

[21] Vittorio Gorrini and Marco Dorigo. “An application of evolu-
tionary algorithms to the scheduling of robotic operations”.
In: European Conference on Artificial Evolution. Springer. 1995,
pp. 345–354.

[22] Hans Kellerer and Vitaly A Strusevich. “Fully polynomial
approximation schemes for a symmetric quadratic knapsack
problem and its scheduling applications”. In: Algorithmica 57.4
(2010), pp. 769–795.

[23] Wojciech Bożejko, Andrzej Gnatowski, Ryszard Klempous,
Michael Affenzeller, and Andreas Beham. “Cyclic scheduling of
a robotic cell”. In: 2016 7th IEEE International Conference on Cog-
nitive Infocommunications (CogInfoCom). IEEE. 2016, pp. 000379–
000384.



bibliography 167

[24] Dev Bahadur Poudel. “Coordinating hundreds of cooperative,
autonomous robots in a warehouse”. In: Jan 27 (2013), pp. 1–13.

[25] Lingzhi Luo, Nilanjan Chakraborty, and Katia Sycara. “Dis-
tributed algorithms for multirobot task assignment with task
deadline constraints”. In: IEEE Transactions on Automation Sci-
ence and Engineering 12.3 (2015), pp. 876–888.

[26] Hana Godrich, Athina P Petropulu, and H Vincent Poor. “Sen-
sor selection in distributed multiple-radar architectures for
localization: A knapsack problem formulation”. In: IEEE Trans-
actions on Signal Processing 60.1 (2011), pp. 247–260.

[27] Gurkan Tuna, V Cagri Gungor, and Kayhan Gulez. “An au-
tonomous wireless sensor network deployment system using
mobile robots for human existence detection in case of disas-
ters”. In: Ad Hoc Networks 13 (2014), pp. 54–68.

[28] G Ayorkor Korsah, Anthony Stentz, and M Bernardine Dias.
“A comprehensive taxonomy for multi-robot task allocation”.
In: The International Journal of Robotics Research 32.12 (2013),
pp. 1495–1512.

[29] Lingzhi Luo, Nilanjan Chakraborty, and Katia Sycara. “Dis-
tributed algorithm design for multi-robot task assignment with
deadlines for tasks”. In: 2013 IEEE International Conference on
Robotics and Automation. IEEE. 2013, pp. 3007–3013.

[30] Alaa Khamis, Ahmed Hussein, and Ahmed Elmogy. “Multi-
robot task allocation: A review of the state-of-the-art”. In: Coop-
erative Robots and Sensor Networks 2015. Springer, 2015, pp. 31–
51.

[31] Yang Yu and V. K. Prasanna. “Power-aware resource allocation
for independent tasks in heterogeneous real-time systems”. In:
Ninth International Conference on Parallel and Distributed Systems.
2002, pp. 341–348.

[32] R. Liu, P. Sinha, and C. E. Koksal. “Joint Energy Management
and Resource Allocation in Rechargeable Sensor Networks”.
In: 2010 Proceedings IEEE INFOCOM. 2010, pp. 1–9.

[33] Gilbert Laporte. “The vehicle routing problem: An overview
of exact and approximate algorithms”. In: European journal of
operational research 59.3 (1992), pp. 345–358.

[34] Tolga Bektas. “The multiple traveling salesman problem: an
overview of formulations and solution procedures”. In: Omega
34.3 (2006), pp. 209–219.

[35] Yves Crama, Vladimir Kats, Joris Van de Klundert, and Eugene
Levner. “Cyclic scheduling in robotic flowshops”. In: Annals of
operations Research 96.1-4 (2000), pp. 97–124.



168 bibliography

[36] Eugene Levner, Vladimir Kats, David Alcaide López de Pablo,
and TC Edwin Cheng. “Complexity of cyclic scheduling prob-
lems: A state-of-the-art survey”. In: Computers & Industrial
Engineering 59.2 (2010), pp. 352–361.

[37] TC Edwin Cheng, Jatinder ND Gupta, and Guoqing Wang. “A
review of flowshop scheduling research with setup times”. In:
Production and operations management 9.3 (2000), pp. 262–282.

[38] Sophie N Parragh, Karl F Doerner, and Richard F Hartl. “A
survey on pickup and delivery problems”. In: Journal für Be-
triebswirtschaft 58.1 (2008), pp. 21–51.

[39] Irina Dumitrescu, Stefan Ropke, Jean-François Cordeau, and
Gilbert Laporte. “The traveling salesman problem with pickup
and delivery: polyhedral results and a branch-and-cut algo-
rithm”. In: Mathematical Programming 121.2 (2010), p. 269.

[40] Franco P Preparata and Michael I Shamos. Computational ge-
ometry: an introduction. Springer Science & Business Media,
2012.

[41] James J Kuffner and Steven M LaValle. “RRT-connect: An effi-
cient approach to single-query path planning”. In: IEEE Inter-
national Conference on Robotics and Automation. Symposia Proceed-
ings. Vol. 2. IEEE. 2000, pp. 995–1001.

[42] Anna Yershova and Steven M LaValle. “Improving motion-
planning algorithms by efficient nearest-neighbor searching”.
In: IEEE Transactions on Robotics 23.1 (2007), pp. 151–157.

[43] Sertac Karaman and Emilio Frazzoli. “Sampling-based algo-
rithms for optimal motion planning”. In: The international jour-
nal of robotics research 30.7 (2011), pp. 846–894.

[44] Nikos Vlassis, Bas Terwijn, and Ben Krose. “Auxiliary particle
filter robot localization from high-dimensional sensor obser-
vations”. In: Proceedings 2002 IEEE International Conference on
Robotics and Automation. Vol. 1. IEEE. 2002, pp. 7–12.

[45] Jaewoo Chung, Matt Donahoe, Chris Schmandt, Ig-Jae Kim, Pe-
dram Razavai, and Micaela Wiseman. “Indoor location sensing
using geo-magnetism”. In: Proceedings of the 9th international
conference on Mobile systems, applications, and services. ACM. 2011,
pp. 141–154.

[46] GaoJun Fan and ShiYao Jin. “Coverage problem in wireless
sensor network: A survey”. In: Journal of networks 5.9 (2010),
p. 1033.

[47] Krishnendu Chakrabarty, S Sitharama Iyengar, Hairong Qi,
and Eungchun Cho. “Grid coverage for surveillance and target
location in distributed sensor networks”. In: IEEE transactions
on computers 51.12 (2002), pp. 1448–1453.



bibliography 169

[48] Santpal Singh Dhillon and Krishnendu Chakrabarty. “Sensor
placement for effective coverage and surveillance in distributed
sensor networks”. In: IEEE Wireless Communications and Net-
working. WCNC 2003. Vol. 3. IEEE. 2003, pp. 1609–1614.

[49] Eduard Semsch, Michal Jakob, Dušan Pavlicek, and Michal
Pechoucek. “Autonomous UAV surveillance in complex urban
environments”. In: Proceedings of the 2009 IEEE/WIC/ACM Inter-
national Joint Conference on Web Intelligence and Intelligent Agent
Technology-Volume 02. IEEE Computer Society. 2009, pp. 82–85.

[50] Denis Krivitski, Assaf Schuster, and Ran Wolff. “A local facil-
ity location algorithm for sensor networks”. In: International
Conference on Distributed Computing in Sensor Systems. Springer.
2005, pp. 368–375.

[51] Christian Frank and Kay Römer. “Distributed facility location
algorithms for flexible configuration of wireless sensor net-
works”. In: International Conference on Distributed Computing in
Sensor Systems. Springer. 2007, pp. 124–141.

[52] Jorge Cortes, Sonia Martinez, Timur Karatas, and Francesco
Bullo. “Coverage control for mobile sensing networks”. In: IEEE
Transactions on robotics and Automation 20.2 (2004), pp. 243–255.

[53] Jonathan Berry, William E Hart, Cynthia A Phillips, James G
Uber, and Jean-Paul Watson. “Sensor placement in municipal
water networks with temporal integer programming models”.
In: Journal of water resources planning and management 132.4
(2006), pp. 218–224.

[54] Xiaopeng Li and Yanfeng Ouyang. “Reliable sensor deployment
for network traffic surveillance”. In: Transportation research part
B: methodological 45.1 (2011), pp. 218–231.

[55] Yael Edan, Tamar Flash, Uri M Peiper, Itzhak Shmulevich,
and Yoav Sarig. “Near-minimum-time task planning for fruit-
picking robots”. In: IEEE transactions on robotics and automation
7.1 (1991), pp. 48–56.

[56] Sivakumar Rathinam, Raja Sengupta, and Swaroop Darbha. “A
resource allocation algorithm for multivehicle systems with
nonholonomic constraints”. In: IEEE Transactions on Automation
Science and Engineering 4.1 (2007), pp. 98–104.

[57] Ying-Fung Wu et al. “Rectilinear shortest paths and minimum
spanning trees in the presence of rectilinear obstacles”. In: IEEE
Transactions on Computers 100.3 (1987), pp. 321–331.

[58] Ken Clarkson. “Approximation algorithms for shortest path
motion planning”. In: Proceedings of the nineteenth annual ACM
symposium on Theory of computing. ACM. 1987, pp. 56–65.



170 bibliography

[59] Amna Khan, Iram Noreen, Hyejeong Ryu, Nakju Lett Doh,
and Zulfiqar Habib. “Online complete coverage path planning
using two-way proximity search”. In: Intelligent Service Robotics
10.3 (2017), pp. 229–240.

[60] Way Kuo and Ming J Zuo. Optimal reliability modeling: principles
and applications. John Wiley & Sons, 2003.

[61] Alan Cobham. “The Intrinsic Computational Difficulty of Func-
tions”. In: Logic, Methodology and Philosophy of Science: Proceed-
ings of the 1964 International Congress (Studies in Logic and the
Foundations of Mathematics). Ed. by Yehoshua Bar-Hillel. North-
Holland Publishing, 1965, pp. 24–30.

[62] Stephen A Cook. “The complexity of theorem-proving proce-
dures”. In: Proceedings of the third annual ACM symposium on
Theory of computing. ACM. 1971, pp. 151–158.

[63] Michael R Garey and David S Johnson. Computers and intractabil-
ity. Vol. 29. wh freeman New York, 2002.

[64] Richard M Karp. “Reducibility among combinatorial prob-
lems”. In: Complexity of computer computations. Springer, 1972,
pp. 85–103.

[65] Juraj Hromkovič. Algorithmics for hard problems: introduction
to combinatorial optimization, randomization, approximation, and
heuristics. Springer Science & Business Media, 2013.

[66] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and
Clifford Stein. Introduction to algorithms. MIT press, 2009.

[67] David S Johnson. “Approximation algorithms for combinatorial
problems”. In: Journal of computer and system sciences 9.3 (1974),
pp. 256–278.

[68] Michel X Goemans and David P Williamson. “Improved ap-
proximation algorithms for maximum cut and satisfiability
problems using semidefinite programming”. In: Journal of the
ACM (JACM) 42.6 (1995), pp. 1115–1145.

[69] David B Shmoys and KI Aardal. Approximation algorithms for
facility location problems. Vol. 1997. Utrecht University: Informa-
tion and Computing Sciences, 1997.

[70] David P Williamson and David B Shmoys. The design of approxi-
mation algorithms. Cambridge university press, 2011.

[71] Vijay V Vazirani. Approximation algorithms. Springer Science &
Business Media, 2013.

[72] Ronald A DeVore and Vladimir N Temlyakov. “Some remarks
on greedy algorithms”. In: Advances in computational Mathemat-
ics 5.1 (1996), pp. 173–187.



bibliography 171

[73] Hamed Pirsiavash, Deva Ramanan, and Charless C Fowlkes.
“Globally-optimal greedy algorithms for tracking a variable
number of objects”. In: 2011 Conference on Computer Vision and
Pattern Recognition. IEEE. 2011, pp. 1201–1208.

[74] Emile Aarts, Emile HL Aarts, and Jan Karel Lenstra. Local search
in combinatorial optimization. Princeton University Press, 2003.

[75] Pascal Van Hentenryck and Laurent Michel. Constraint-based
local search. The MIT press, 2009.

[76] Dimitri P Bertsekas, Dimitri P Bertsekas, Dimitri P Bertsekas,
and Dimitri P Bertsekas. Dynamic programming and optimal con-
trol. Vol. 1. 2. Athena scientific Belmont, MA, 1995.

[77] Warren Buckler Powell. Handbook of learning and approximate
dynamic programming. Vol. 2. John Wiley & Sons, 2004.

[78] Katta G Murty. Linear programming. Springer, 1983.

[79] Dimitris Bertsimas and John N Tsitsiklis. Introduction to linear
optimization. Vol. 6. Athena Scientific Belmont, MA, 1997.

[80] Rajeev Motwani and Prabhakar Raghavan. Randomized algo-
rithms. Cambridge university press, 1995.

[81] Michael O Rabin. “Probabilistic algorithm for testing primality”.
In: Journal of number theory 12.1 (1980), pp. 128–138.

[82] Pankaj K Agarwal and Micha Sharir. “Efficient randomized
algorithms for some geometric optimization problems”. In:
Discrete & Computational Geometry 16.4 (1996), pp. 317–337.

[83] Michiel Smid. “Closest-point problems in computational ge-
ometry”. In: Handbook of computational geometry. Elsevier, 2000,
pp. 877–935.

[84] Kenneth A De Jong and William M Spears. “Using genetic
algorithms to solve NP-complete problems.” In: ICGA. 1989,
pp. 124–132.

[85] Lawrence. Davis. “Handbook of Genetic Algorithms”. In: 1990.

[86] Melanie Mitchell. An introduction to genetic algorithms. MIT
press, 1998.

[87] Gerardo Beni and Jing Wang. “Swarm intelligence in cellular
robotic systems”. In: Robots and biological systems: towards a new
bionics? Springer, 1993, pp. 703–712.

[88] James Kennedy. “Swarm intelligence”. In: Handbook of nature-
inspired and innovative computing. Springer, 2006, pp. 187–219.

[89] Alberto Colorni, Marco Dorigo, Vittorio Maniezzo, et al. “Dis-
tributed optimization by ant colonies”. In: Proceedings of the first
European conference on artificial life. Vol. 142. Cambridge, MA.
1992, pp. 134–142.



172 bibliography

[90] Marco Dorigo and Mauro Birattari. Ant colony optimization.
Springer, 2010.

[91] Judea Pearl. Heuristics: Intelligent Search Strategies for Computer
Problem Solving. USA: Addison-Wesley Longman Publishing
Co., Inc., 1984. isbn: 0201055945.

[92] Yuval Davidor. Genetic Algorithms and Robotics: A heuristic strat-
egy for optimization. Vol. 1. World Scientific, 1991.

[93] Osamu Takahashi and Robert J Schilling. “Motion planning in
a plane using generalized Voronoi diagrams”. In: IEEE Transac-
tions on robotics and automation 5.2 (1989), pp. 143–150.

[94] Ellips Masehian and Davoud Sedighizadeh. “Classic and heuris-
tic approaches in robot motion planning-a chronological re-
view”. In: World Academy of Science, Engineering and Technology
23.5 (2007), pp. 101–106.

[95] Thi Thoa Mac, Cosmin Copot, Duc Trung Tran, and Robin
De Keyser. “Heuristic approaches in robot path planning: A
survey”. In: Robotics and Autonomous Systems 86 (2016), pp. 13–
28.

[96] Xiaoming Zheng, Sonal Jain, Sven Koenig, and David Kempe.
“Multi-robot forest coverage”. In: 2005 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE. 2005, pp. 3852–
3857.

[97] Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack
Kaelbling. “Ffrob: An efficient heuristic for task and motion
planning”. In: Algorithmic Foundations of Robotics XI. Springer,
2015, pp. 179–195.

[98] Neil T Dantam, Zachary K Kingston, Swarat Chaudhuri, and
Lydia E Kavraki. “Incremental Task and Motion Planning: A
Constraint-Based Approach.” In: Robotics: Science and systems.
Vol. 12. Ann Arbor, MI, USA. 2016, p. 00052.

[99] Kelin Jose and Dilip Kumar Pratihar. “Task allocation and
collision-free path planning of centralized multi-robots system
for industrial plant inspection using heuristic methods”. In:
Robotics and Autonomous Systems 80 (2016), pp. 34–42.

[100] Donald Ervin Knuth. The art of computer programming. Vol. 3.
Pearson Education, 1997.

[101] Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel.
“An Algorithm for Finding Best Matches in Logarithmic Time”.
In: ACM Trans. Math. Software 3 (1977), pp. 209–226. doi: 10.
1145/355744.355745.

https://doi.org/10.1145/355744.355745
https://doi.org/10.1145/355744.355745


bibliography 173

[102] Sunil Arya, David M Mount, Nathan S Netanyahu, Ruth Sil-
verman, and Angela Y Wu. “An optimal algorithm for approxi-
mate nearest neighbor searching fixed dimensions”. In: Journal
of the ACM (JACM) 45.6 (1998), pp. 891–923.

[103] K Fukunage and Patrenahalli M. Narendra. “A branch and
bound algorithm for computing k-nearest neighbors”. In: IEEE
transactions on computers 7 (1975), pp. 750–753.

[104] Marius Muja and David Lowe. “Fast Approximate Nearest
Neighbors with Automatic Algorithm Configuration.” In: vol. 1.
Jan. 2009, pp. 331–340.

[105] Roger Weber, Hans-Jörg Schek, and Stephen Blott. “A quan-
titative analysis and performance study for similarity-search
methods in high-dimensional spaces”. In: VLDB. Vol. 98. 1998,
pp. 194–205.

[106] Alexandr Andoni and Piotr Indyk. “Near-optimal hashing algo-
rithms for approximate nearest neighbor in high dimensions”.
In: 2006 47th annual IEEE symposium on foundations of computer
science (FOCS’06). IEEE. 2006, pp. 459–468.

[107] Malcolm Slaney and Michael Casey. “Locality-sensitive hashing
for finding nearest neighbors [lecture notes]”. In: IEEE Signal
processing magazine 25.2 (2008), pp. 128–131.

[108] Marius Muja and David G Lowe. “Scalable nearest neighbor
algorithms for high dimensional data”. In: IEEE transactions on
pattern analysis and machine intelligence 36.11 (2014), pp. 2227–
2240.

[109] Georges Voronoi. “Nouvelles applications des paramètres con-
tinus à la théorie des formes quadratiques. Deuxième mémoire.
Recherches sur les parallélloèdres primitifs.” In: Journal für die
reine und angewandte Mathematik 134 (1908), pp. 198–287.

[110] Priyadarshi Bhattacharya and Marina L Gavrilova. “Voronoi
diagram in optimal path planning”. In: 4th International Sympo-
sium on Voronoi Diagrams in Science and Engineering (ISVD 2007).
IEEE. 2007, pp. 38–47.

[111] Dolores Blanco, Beatriz L Boada, and Luis Moreno. “Local-
ization by voronoi diagrams correlation”. In: Proceedings 2001
ICRA. IEEE International Conference on Robotics and Automation
(Cat. No. 01CH37164). Vol. 4. IEEE. 2001, pp. 4232–4237.

[112] L Chaimowicz, A Cowley, D Gomez-Ibanez, B Grocholsky, MA
Hsieh, H Hsu, JF Keller, V Kumar, R Swaminathan, and CJ
Taylor. “Deploying air-ground multi-robot teams in urban en-
vironments”. In: Multi-Robot Systems. From Swarms to Intelligent
Automata Volume III. Springer, 2005, pp. 223–234.



174 bibliography

[113] Miguel García, Domenec Puig, Ling Wu, and Albert Solé.
“Voronoi-Based Space Partitioning for Coordinated Multi-Robot
Exploration”. In: Journal of Pysical Agents, ISSN 1888-0258 1 (Jan.
2007), pp. 37–44. doi: 10.14198/JoPha.2007.1.1.05.

[114] Kai M Wurm, Cyrill Stachniss, and Wolfram Burgard. “Coor-
dinated multi-robot exploration using a segmentation of the
environment”. In: 2008 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE. 2008, pp. 1160–1165.

[115] Vasek Chvatal. “A greedy heuristic for the set-covering prob-
lem”. In: Mathematics of operations research 4.3 (1979), pp. 233–
235.

[116] László Lovász. “On the ratio of optimal integral and fractional
covers”. In: Discrete mathematics 13.4 (1975), pp. 383–390.

[117] Dorit S Hochbaum. “Approximation algorithms for the set
covering and vertex cover problems”. In: SIAM Journal on com-
puting 11.3 (1982), pp. 555–556.

[118] Eran Halperin. “Improved approximation algorithms for the
vertex cover problem in graphs and hypergraphs”. In: SIAM
Journal on Computing 31.5 (2002), pp. 1608–1623.

[119] Kenneth L Clarkson and Kasturi Varadarajan. “Improved ap-
proximation algorithms for geometric set cover”. In: Discrete &
Computational Geometry 37.1 (2007), pp. 43–58.

[120] Reuven Bar-Yehuda and Shimon Even. “A linear-time approxi-
mation algorithm for the weighted vertex cover problem”. In:
Journal of Algorithms 2.2 (1981), pp. 198–203.

[121] Nabil H Mustafa and Saurabh Ray. “Improved results on geo-
metric hitting set problems”. In: Discrete & Computational Geom-
etry 44.4 (2010), pp. 883–895.

[122] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Joshua Lapan,
Andrew Lundgren, and Daniel Preda. “A quantum adiabatic
evolution algorithm applied to random instances of an NP-
complete problem”. In: Science 292.5516 (2001), pp. 472–475.

[123] William Rowan Hamilton. “Account of the icosian calculus”. In:
Proceedings of the Royal Irish Academy. Vol. 6. 1858, pp. 415–416.

[124] A brief History of the Travelling Salesman Problem. https : / /

www.theorsociety.com/about-or/or-methods/heuristics/

a-brief-history-of-the-travelling-salesman-problem/.
Accessed: 11-16-2019.

[125] Karl Menger. “Das botenproblem”. In: Ergebnisse eines mathema-
tischen kolloquiums 2 (1932), pp. 11–12.

[126] George Dantzig, Ray Fulkerson, and Selmer Johnson. “Solution
of a large-scale traveling-salesman problem”. In: Journal of the
operations research society of America 2.4 (1954), pp. 393–410.

https://doi.org/10.14198/JoPha.2007.1.1.05
https://www.theorsociety.com/about-or/or-methods/heuristics/a-brief-history-of-the-travelling-salesman-problem/
https://www.theorsociety.com/about-or/or-methods/heuristics/a-brief-history-of-the-travelling-salesman-problem/
https://www.theorsociety.com/about-or/or-methods/heuristics/a-brief-history-of-the-travelling-salesman-problem/


bibliography 175

[127] P Miliotis. “Integer programming approaches to the travelling
salesman problem”. In: Mathematical Programming 10.1 (1976),
pp. 367–378.

[128] W.L Eastman. Linear programming with pattern constraints. PhD
thesis, Department of Economics, Harvard University, Cam-
bridge, MA, 1958.

[129] John DC Little, Katta G Murty, Dura W Sweeney, and Caroline
Karel. “An algorithm for the traveling salesman problem”. In:
Operations research 11.6 (1963), pp. 972–989.

[130] Giorgio Carpaneto and Paolo Toth. “Some new branching and
bounding criteria for the asymmetric travelling salesman prob-
lem”. In: Management Science 26.7 (1980), pp. 736–743.

[131] Ralph E Gomory. “An algorithm for integer solutions to linear
programs”. In: Recent advances in mathematical programming
64.260-302 (1963), p. 14.

[132] Manfred Padberg and Giovanni Rinaldi. “A branch-and-cut
algorithm for the resolution of large-scale symmetric traveling
salesman problems”. In: SIAM review 33.1 (1991), pp. 60–100.

[133] Martin Grötschel and Olaf Holland. “Solution of large-scale
symmetric travelling salesman problems”. In: Mathematical Pro-
gramming 51.1-3 (1991), pp. 141–202.

[134] David Applegate, Ribert Bixby, Vasek Chvatal, and William
Cook. Concorde TSP solver. 2006.

[135] Gilbert Laporte. “The traveling salesman problem: An overview
of exact and approximate algorithms”. In: European Journal of
Operational Research 59.2 (1992), pp. 231–247.

[136] Alfred V Aho and John E Hopcroft. The design and analysis of
computer algorithms. Pearson Education India, 1974.

[137] Nicos Christofides. Worst-case analysis of a new heuristic for the
travelling salesman problem. Tech. rep. Carnegie-Mellon Univ
Pittsburgh Pa Management Sciences Research Group, 1976.

[138] Daniel J Rosenkrantz, Richard E Stearns, and Philip M Lewis II.
“An analysis of several heuristics for the traveling salesman
problem”. In: SIAM journal on computing 6.3 (1977), pp. 563–581.

[139] Michel Gendreau, Alain Hertz, and Gilbert Laporte. “New
insertion and postoptimization procedures for the traveling
salesman problem”. In: Operations Research 40.6 (1992), pp. 1086–
1094.

[140] Shen Lin. “Computer solutions of the traveling salesman prob-
lem”. In: Bell System Technical Journal 44.10 (1965), pp. 2245–
2269.



176 bibliography

[141] Shen Lin and Brian W Kernighan. “An effective heuristic al-
gorithm for the traveling-salesman problem”. In: Operations
research 21.2 (1973), pp. 498–516.

[142] Ernesto Bonomi and Jean-Luc Lutton. “The N-city travelling
salesman problem: Statistical mechanics and the Metropolis
algorithm”. In: SIAM review 26.4 (1984), pp. 551–568.

[143] Bruce L Golden and Christopher C Skiscim. “Using simulated
annealing to solve routing and location problems”. In: Naval
Research Logistics Quarterly 33.2 (1986), pp. 261–279.

[144] Fred Glover and Manuel Laguna. “Tabu search”. In: Handbook
of combinatorial optimization. Springer, 1998, pp. 2093–2229.

[145] Mitsuo Gen and Lin Lin. “Genetic Algorithms”. In: Wiley Ency-
clopedia of Computer Science and Engineering (2007), pp. 1–15.

[146] Donald Davendra. Traveling Salesman Problem: Theory and Appli-
cations. BoD–Books on Demand, 2010.

[147] Gilbert Laporte and Yves Nobert. “A cutting planes algorithm
for the m-salesmen problem”. In: Journal of the Operational Re-
search society 31.11 (1980), pp. 1017–1023.

[148] A Iqbal Ali and Jeff L Kennington. “The asymmetric M-travelling
salesmen problem: A duality based branch-and-bound algo-
rithm”. In: Discrete Applied Mathematics 13.2-3 (1986), pp. 259–
276.

[149] Bezalel Gavish and Kizhanathan Srikanth. “An optimal solu-
tion method for large-scale multiple traveling salesmen prob-
lems”. In: Operations Research 34.5 (1986), pp. 698–717.

[150] Robert A Russell. “An effective heuristic for the m-tour travel-
ing salesman problem with some side conditions”. In: Opera-
tions Research 25.3 (1977), pp. 517–524.

[151] George B Dantzig and John H Ramser. “The truck dispatching
problem”. In: Management science 6.1 (1959), pp. 80–91.

[152] Bruce L Golden, Subramanian Raghavan, and Edward A Wasil.
The vehicle routing problem: latest advances and new challenges.
Vol. 43. Springer Science & Business Media, 2008.

[153] Kris Braekers, Katrien Ramaekers, and Inneke Van Nieuwen-
huyse. “The vehicle routing problem: State of the art classifi-
cation and review”. In: Computers & Industrial Engineering 99

(2016), pp. 300–313.

[154] Yulun Wang and STEVENE Butner. “A new architecture for
robot control”. In: Proceedings. 1987 IEEE International Conference
on Robotics and Automation. Vol. 4. IEEE. 1987, pp. 664–670.

[155] SY Nof and D Hanna. “Operational characteristics of multi-
robot systems with cooperation”. In: The International Journal of
Production Research 27.3 (1989), pp. 477–492.



bibliography 177

[156] Y Uny Cao, Alex S Fukunaga, and Andrew Kahng. “Coop-
erative mobile robotics: Antecedents and directions”. In: Au-
tonomous robots 4.1 (1997), pp. 7–27.

[157] Zhi Yan, Nicolas Jouandeau, and Arab Ali Cherif. “A survey
and analysis of multi-robot coordination”. In: International Jour-
nal of Advanced Robotic Systems 10.12 (2013), p. 399.

[158] Frankling Henry Giddings. Sociology. New York: Columbia
University Press, 1908.

[159] Shin’ichi Yuta and Suparerk Premvuti. “Coordinating autono-
mous and centralized decision making to achieve cooperative
behaviors between multiple mobile robots”. In: Proceedings
of the IEEE/RSJ international conference on intelligent robots and
systems. Vol. 3. IEEE. 1992, pp. 1566–1574.

[160] Ronald C Arkin and J David Hobbs. “Dimensions of communi-
cation and social organization in multi-agent robotic systems”.
In: Proceedings of the second international conference on From ani-
mals to animats. Vol. 2. 1993, pp. 486–493.

[161] Gregory Dudek and Michael Jenkin. Computational principles of
mobile robotics. Cambridge university press, 2010.

[162] Pratap Tokekar, Joshua Vander Hook, David Mulla, and Volkan
Isler. “Sensor planning for a symbiotic UAV and UGV system
for precision agriculture”. In: IEEE Transactions on Robotics 32.6
(2016), pp. 1498–1511.

[163] Satyanarayana G Manyam, Kaarthik Sundar, and David W Cas-
beer. “Cooperative Routing for an Air-Ground Vehicle Team–
Exact Algorithm, Transformation Method, and Heuristics”. In:
IEEE Transactions on Automation Science and Engineering (2019).

[164] Fernando Ropero, Pablo Muñoz, and María D. R-Moreno.
“TERRA: A path planning algorithm for cooperative UGV–UAV
exploration”. In: Engineering Applications of Artificial Intelligence
78 (2019), pp. 260–272.

[165] Lukas Klodt, Saman Khodaverdian, and Volker Willert. “Mo-
tion control for UAV-UGV cooperation with visibility con-
straint”. In: 2015 IEEE Conference on Control Applications (CCA).
IEEE. 2015, pp. 1379–1385.

[166] M Barbier, H Cao, S Lacroix, C Lesire, F Teichteil-Königsbuch,
and C Tessier. “Decision issues for multiple heterogeneous
vehicles in uncertain environments”. In: National conference on
control architectures of robots (CAR). 2009.

[167] Gabriele Ferri and Vladimir Djapic. “Adaptive mission plan-
ning for cooperative autonomous maritime vehicles”. In: 2013
IEEE International Conference on Robotics and Automation. IEEE.
2013, pp. 5586–5592.



178 bibliography

[168] Yu Wu. “Coordinated path planning for an unmanned aerial-
aquatic vehicle (UAAV) and an autonomous underwater vehi-
cle (AUV) in an underwater target strike mission”. In: Ocean
Engineering 182 (2019), pp. 162–173.

[169] Florian Shkurti, Anqi Xu, Malika Meghjani, Juan Camilo Gam-
boa Higuera, Yogesh Girdhar, Philippe Giguere, Bir Bikram
Dey, Jimmy Li, Arnold Kalmbach, Chris Prahacs, et al. “Multi-
domain monitoring of marine environments using a heteroge-
neous robot team”. In: 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE. 2012, pp. 1747–1753.

[170] P Valdivia y Alvarado, T Taher, H Kurniawati, G Weymouth,
RR Khan, J Leighton, G Papadopoulos, G Barbastathis, and
N Patrikalakis. “A coastal distributed autonomous sensor net-
work”. In: OCEANS’11 MTS/IEEE KONA. IEEE. 2011, pp. 1–
8.

[171] Tyler Gunn and John Anderson. “Dynamic heterogeneous team
formation for robotic urban search and rescue”. In: Journal of
Computer and System Sciences 81.3 (2015), pp. 553–567.

[172] Prithviraj Dasgupta, José Baca, KR Guruprasad, Angélica Muñoz-
Meléndez, and Janyl Jumadinova. “The comrade system for
multirobot autonomous landmine detection in postconflict re-
gions”. In: Journal of Robotics 2015 (2015).

[173] Gautham P Das, Thomas M McGinnity, Sonya A Coleman, and
Laxmidhar Behera. “A distributed task allocation algorithm
for a multi-robot system in healthcare facilities”. In: Journal of
Intelligent & Robotic Systems 80.1 (2015), pp. 33–58.

[174] Jeremi Gancet, Gautier Hattenberger, Rachid Alami, and Simon
Lacroix. “Task planning and control for a multi-UAV system:
architecture and algorithms”. In: 2005 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE. 2005, pp. 1017–
1022.

[175] Neil Mathew, Stephen L Smith, and Steven L Waslander. “Mul-
tirobot rendezvous planning for recharging in persistent tasks”.
In: IEEE Transactions on Robotics 31.1 (2015), pp. 128–142.

[176] Kaarthik Sundar and Sivakumar Rathinam. “Algorithms for
heterogeneous, multiple depot, multiple unmanned vehicle
path planning problems”. In: Journal of Intelligent & Robotic
Systems 88.2-4 (2017), pp. 513–526.

[177] PB Sujit, Joao Sousa, and F Lobo Pereira. “UAV and AUVs
coordination for ocean exploration”. In: Oceans 2009-Europe.
IEEE. 2009, pp. 1–7.

[178] Sathyaram Venkatesan. “AUV for Search & Rescue at sea-an in-
novative approach”. In: 2016 IEEE/OES Autonomous Underwater
Vehicles (AUV). IEEE. 2016, pp. 1–9.



bibliography 179

[179] Chase C. Murray and Ritwik Raj. “The multiple flying side-
kicks traveling salesman problem: Parcel delivery with multi-
ple drones”. In: Transportation Research Part C: Emerging Tech-
nologies 110 (2020), pp. 368 –398. issn: 0968-090X. doi: https:
//doi.org/10.1016/j.trc.2019.11.003.

[180] Bingxi Li, Barzin Moridian, Anurag Kamal, Sharvil Patankar,
and Nina Mahmoudian. “Multi-robot mission planning with
static energy replenishment”. In: Journal of Intelligent & Robotic
Systems 95.2 (2019), pp. 745–759.

[181] A Aghaeeyan, Farzaneh Abdollahi, and Heidar Ali Talebi.
“UAV–UGVs cooperation: With a moving center based tra-
jectory”. In: Robotics and Autonomous Systems 63 (2015), pp. 1–
9.

[182] Sara Minaeian, Jian Liu, and Young-Jun Son. “Vision-based
target detection and localization via a team of cooperative
UAV and UGVs”. In: IEEE Transactions on systems, man, and
cybernetics: systems 46.7 (2015), pp. 1005–1016.

[183] Ben Grocholsky, James Keller, Vijay Kumar, and George Pappas.
“Cooperative air and ground surveillance”. In: IEEE Robotics &
Automation Magazine 13.3 (2006), pp. 16–25.

[184] Barbara Arbanas, Antun Ivanovic, Marko Car, Matko Orsag,
Tamara Petrovic, and Stjepan Bogdan. “Decentralized planning
and control for UAV–UGV cooperative teams”. In: Autonomous
Robots 42.8 (2018), pp. 1601–1618.

[185] Boris Sofman, J Bagnell, Anthony Stentz, and Nicolas Vandapel.
“Terrain classification from aerial data to support ground vehi-
cle navigation”. In: Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, Tech. Rep. CMURI-TR-05-39 (2006).

[186] L Cantelli, M Lo Presti, M Mangiameli, CD Melita, and G Mus-
cato. “Autonomous cooperation between UAV and UGV to
improve navigation and environmental monitoring in rough
environments”. In: Proceedings 10th International symposium HU-
DEM,(ISSN 1848-9206). 2013, pp. 109–112.

[187] Elias Mueggler, Matthias Faessler, Flavio Fontana, and Da-
vide Scaramuzza. “Aerial-guided navigation of a ground robot
among movable obstacles”. In: 2014 IEEE International Sympo-
sium on Safety, Security, and Rescue Robotics. IEEE. 2014, pp. 1–
8.

[188] E. H. C. Harik, F. Guérin, F. Guinand, J. Brethé, and H. Pelvil-
lain. “UAV-UGV cooperation for objects transportation in an
industrial area”. In: 2015 IEEE International Conference on Indus-
trial Technology (ICIT). IEEE. 2015, pp. 547–552.

https://doi.org/https://doi.org/10.1016/j.trc.2019.11.003
https://doi.org/https://doi.org/10.1016/j.trc.2019.11.003


180 bibliography

[189] Martin Saska, Tomas Krajnik, and Libor Pfeucil. “Cooperative
µUAV-UGV autonomous indoor surveillance”. In: International
Multi-Conference on Systems, Signals & Devices. IEEE. 2012, pp. 1–
6.

[190] Christopher Reardon and Jonathan Fink. “Air-ground robot
team surveillance of complex 3D environments”. In: 2016 IEEE
International Symposium on Safety, Security, and Rescue Robotics
(SSRR). IEEE. 2016, pp. 320–327.

[191] Christos Papachristos and Anthony Tzes. “The power-tethered
uav-ugv team: A collaborative strategy for navigation in partially-
mapped environments”. In: 22nd Mediterranean Conference on
Control and Automation. IEEE. 2014, pp. 1153–1158.

[192] Parikshit Maini and PB Sujit. “On cooperation between a fuel
constrained UAV and a refueling UGV for large scale mapping
applications”. In: 2015 International Conference on Unmanned
Aircraft Systems (ICUAS). IEEE. 2015, pp. 1370–1377.

[193] Shannon Hood, Kelly Benson, Patrick Hamod, Daniel Madison,
Jason M O’Kane, and Ioannis Rekleitis. “Bird’s eye view: Coop-
erative exploration by UGV and UAV”. In: 2017 International
Conference on Unmanned Aircraft Systems (ICUAS). IEEE. 2017,
pp. 247–255.

[194] Kevin Yu, Ashish Kumar Budhiraja, Spencer Buebel, and Pratap
Tokekar. “Algorithms and experiments on routing of unmanned
aerial vehicles with mobile recharging stations”. In: Journal of
Field Robotics 36.3 (2019), pp. 602–616.

[195] Luciano Cantelli, Michele Mangiameli, C Donato Melita, and
Giovanni Muscato. “UAV/UGV cooperation for surveying op-
erations in humanitarian demining”. In: 2013 IEEE international
symposium on safety, security, and rescue robotics (SSRR). IEEE.
2013, pp. 1–6.

[196] Khaled A Ghamry, Mohamed A Kamel, and Youmin Zhang.
“Cooperative forest monitoring and fire detection using a team
of UAVs-UGVs”. In: 2016 International Conference on Unmanned
Aircraft Systems (ICUAS). IEEE. 2016, pp. 1206–1211.

[197] Neil Mathew, Stephen L Smith, and Steven L Waslander. “Plan-
ning paths for package delivery in heterogeneous multirobot
teams”. In: IEEE Transactions on Automation Science and Engi-
neering 12.4 (2015), pp. 1298–1308.

[198] Charles Pippin, Gary Gray, Michael Matthews, Dave Price, Ai-
Ping Hu, Warren Lee, Michael Novitzky, and Paul Varnell. The
design of an air-ground research platform for cooperative surveillance.
Tech. rep. Georgia Tech Research Institute, 2010.



bibliography 181

[199] Chad Hager, Dimitri Zarzhitsky, Hyukseong Kwon, and Daniel
Pack. “Cooperative target localization using heterogeneous
unmanned ground and aerial vehicles”. In: 2010 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems. IEEE. 2010,
pp. 2952–2957.

[200] Serkan Çaşka and Ahmet Gayretli. “An Unmanned Ground
Vehicle-aided Task Exchange System Of Small Air Vehicles
For Remote Surveillance Missions”. In: International Journal of
Engineering Research and General Science 4.2 (2016), pp. 873–883.

[201] Jin Hyo Kim, Ji-Wook Kwon, and Jiwon Seo. “Multi-UAV-based
stereo vision system without GPS for ground obstacle mapping
to assist path planning of UGV”. In: Electronics Letters 50.20

(2014), pp. 1431–1432.

[202] Ignacio Mas, Patricio Moreno, Juan Giribet, and Diego Valentino
Barzi. “Formation control for multi-domain autonomous vehi-
cles based on dual quaternions”. In: 2017 International Confer-
ence on Unmanned Aircraft Systems (ICUAS). IEEE. 2017, pp. 723–
730.

[203] Jiao-Lin Shi, Bin Hu, Long Chen, Ding-Xue Zhang, Ding-Xin
He, Jian Huang, and Zhi-Hong Guan. “Formation Tracking of
Heterogeneous UGV-UAV Systems with Switching Directed
Topologies”. In: 2019 IEEE 4th International Conference on Ad-
vanced Robotics and Mechatronics (ICARM). IEEE. 2019, pp. 970–
975.

[204] Yang Chen, Shiwen Ren, Zhihuan Chen, Mengqing Chen, and
Huaiyu Wu. “Path Planning for Vehicle-borne System Consist-
ing of Multi Air–ground Robots”. In: Robotica (2019), pp. 1–
19.

[205] Amazon Prime Air. https://www.amazon.com/Amazon-Prime-
Air/b?ie=UTF8&node=8037720011. Accessed: 11-26-2019.

[206] DHL Parcel Copter. https://www.dpdhl.com/en/media-relat-
ions / press - releases / 2019 / dhl - launches - its - first -

regular-fully-automated-and-intelligent-urban-drone-

delivery-service.html. Accessed: 11-26-2019.

[207] UPS Drone Delivery Service. https://www.ups.com/us/es/
services/knowledge- center/article.page?kid=cd18bdc2.
Accessed: 11-26-2019.

[208] FedEx Wing Express. https://qz.com/1712200/google-wing-
launching-us-drone-deliveries-with-fedex-walgreens/.
Accessed: 11-26-2019.

[209] Amazon’s Jeff Bezos looks to the future. https://www.cbsnews.
com / news / amazons - jeff - bezos - looks - to - the - future/.
Accessed: 11-26-2019.

https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011
https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011
https://www.dpdhl.com/en/media-relat-ions/press-releases/2019/dhl-launches-its-first-regular-fully-automated-and-intelligent-urban-drone-delivery-service.html
https://www.dpdhl.com/en/media-relat-ions/press-releases/2019/dhl-launches-its-first-regular-fully-automated-and-intelligent-urban-drone-delivery-service.html
https://www.dpdhl.com/en/media-relat-ions/press-releases/2019/dhl-launches-its-first-regular-fully-automated-and-intelligent-urban-drone-delivery-service.html
https://www.dpdhl.com/en/media-relat-ions/press-releases/2019/dhl-launches-its-first-regular-fully-automated-and-intelligent-urban-drone-delivery-service.html
https://www.ups.com/us/es/services/knowledge-center/article.page?kid=cd18bdc2
https://www.ups.com/us/es/services/knowledge-center/article.page?kid=cd18bdc2
https://qz.com/1712200/google-wing-launching-us-drone-deliveries-with-fedex-walgreens/
https://qz.com/1712200/google-wing-launching-us-drone-deliveries-with-fedex-walgreens/
https://www.cbsnews.com/news/amazons-jeff-bezos-looks-to-the-future/
https://www.cbsnews.com/news/amazons-jeff-bezos-looks-to-the-future/


182 bibliography

[210] Niels Agatz, Paul Bouman, and Marie Schmidt. “Optimization
approaches for the traveling salesman problem with drone”.
In: Transportation Science 52.4 (2018), pp. 965–981.

[211] Kai Peng, Jingxuan Du, Fang Lu, Qianguo Sun, Yan Dong,
Pan Zhou, and Menglan Hu. “A hybrid genetic algorithm on
routing and scheduling for vehicle-assisted multi-drone parcel
delivery”. In: IEEE Access 7 (2019), pp. 49191–49200.

[212] Lynne E Parker. “Current state of the art in distributed au-
tonomous mobile robotics”. In: Distributed Autonomous Robotic
Systems 4. Springer, 2000, pp. 3–12.

[213] Alessandro Farinelli, Luca Iocchi, and Daniele Nardi. “Mul-
tirobot systems: a classification focused on coordination”. In:
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cy-
bernetics) 34.5 (2004), pp. 2015–2028.

[214] Toshio Fukuda and Seiya Nakagawa. “A dynamically reconfig-
urable robotic system (concept of a system and optimal con-
figurations)”. In: IECON’87: Industrial Applications of Robotics &
Machine Vision. Vol. 856. International Society for Optics and
Photonics. 1987, pp. 588–595.

[215] Gerardo Beni. “The concept of cellular robotic system”. In:
Proceedings IEEE International Symposium on Intelligent Control
1988. IEEE. 1988, pp. 57–62.

[216] Hajime Asama, Akihiro Matsumoto, and Yoshiki Ishida. “De-
sign of an autonomous and distributed robot system: AC-
TRESS”. In: Proceedings. IEEE/RSJ International Workshop on In-
telligent Robots and Systems’.(IROS’89)’The Autonomous Mobile
Robots and Its Applications. IEEE. 1989, pp. 283–290.

[217] Alan H Bond and Les Gasser. Readings in distributed artificial
intelligence. Morgan Kaufmann, 2014.

[218] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern
approach. Pearson Education Limited, 2016.

[219] ESA-ESTEC Requirements & Standards Division. Space engi-
neering: Space segment operability. Technical Report ECSS-E-ST-
70-11C, European Coordination for Space Standardization. Tech. rep.
Noordwijk, The Netherlands, 2008.

[220] Rodney Brooks. “A robust layered control system for a mobile
robot”. In: IEEE journal on robotics and automation 2.1 (1986),
pp. 14–23.

[221] R James Firby. “An investigation into reactive planning in
complex domains.” In: AAAI. Vol. 87. 1987, pp. 202–206.



bibliography 183

[222] Jacob T Schwartz and Micha Sharir. “On the “piano movers”
problem. II. General techniques for computing topological prop-
erties of real algebraic manifolds”. In: Advances in applied Math-
ematics 4.3 (1983), pp. 298–351.

[223] Joseph S. B. Mitchell. “Planning Shortest Paths (Computational
Geometry, Motion Planning, Visibility Graphs, Dijkstra’s Algo-
rithm, Voronoi Diagrams)”. AAI8700791. PhD thesis. Stanford,
CA, USA, 1986.

[224] Keiji Nagatani, Howie Choset, and Sebastian Thrun. “Towards
exact localization without explicit localization with the gener-
alized voronoi graph”. In: 1998 IEEE International Conference on
Robotics and Automation. Vol. 1. IEEE. 1998, pp. 342–348.

[225] Xiaoyu Yang, Mehrdad Moallem, and Rajnikant V Patel. “A
layered goal-oriented fuzzy motion planning strategy for mo-
bile robot navigation”. In: IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics) 35.6 (2005), pp. 1214–1224.

[226] Rajibul Huq, George KI Mann, and Raymond G Gosine. “Mo-
bile robot navigation using motor schema and fuzzy context
dependent behavior modulation”. In: Applied soft computing 8.1
(2008), pp. 422–436.

[227] Erann Gat, R Peter Bonnasso, Robin Murphy, et al. “On three-
layer architectures”. In: Artificial intelligence and mobile robots
195 (1998), p. 210.

[228] Erann Gat. “Integrating planning and reacting in a hetero-
geneous asynchronous architecture for controlling real-world
mobile robots”. In: AAAI. Vol. 1992. 1992, p. 809.

[229] Rachid Alami, Raja Chatila, Sara Fleury, Malik Ghallab, and
Félix Ingrand. “An architecture for autonomy”. In: The Interna-
tional Journal of Robotics Research 17.4 (1998), pp. 315–337.

[230] Richard Volpe, Issa Nesnas, Tara Estlin, Darren Mutz, Richard
Petras, and Hari Das. “The CLARAty architecture for robotic
autonomy”. In: 2001 IEEE Aerospace Conference Proceedings. Vol. 1.
IEEE. 2001, pp. 1–121.

[231] Nicola Muscettola, Gregory Dorais, Chuck Fry, Rich Levin-
son, and Christian Plaunt. “IDEA: Planning at the Core of
Autonomous Reactive Agents”. In: (July 2002).

[232] Conor McGann, Frederic Py, Kanna Rajan, Hans Thomas,
Richard Henthorn, and Rob McEwen. “T-rex: A model-based
architecture for auv control”. In: 3rd Workshop on Planning and
Plan Execution for Real-World Systems. 2007.

[233] Luca Iocchi, Daniele Nardi, and Massimiliano Salerno. “Re-
activity and deliberation: a survey on multi-robot systems”.
In: Workshop on Balancing Reactivity and Social Deliberation in
Multi-Agent Systems. Springer. 2000, pp. 9–32.



184 bibliography

[234] Fabrice R Noreils. “Toward a robot architecture integrating
cooperation between mobile robots: Application to indoor en-
vironment”. In: The International Journal of Robotics Research 12.1
(1993), pp. 79–98.

[235] Claude F Touzet. “Robot awareness in cooperative mobile robot
learning”. In: Autonomous Robots 8.1 (2000), pp. 87–97.

[236] Jacques Ferber and Gerhard Weiss. Multi-agent systems: an intro-
duction to distributed artificial intelligence. Vol. 1. Addison-Wesley
Reading, 1999.

[237] Philippe Caloud, Wonyun Choi, J-C Latombe, Claude Le Pape,
and Mark Yim. “Indoor automation with many mobile robots”.
In: EEE International Workshop on Intelligent Robots and Systems,
Towards a New Frontier of Applications. IEEE. 1990, pp. 67–72.

[238] Fang Tang and Lynne E Parker. “Asymtre: Automated synthe-
sis of multi-robot task solutions through software reconfigura-
tion”. In: Proceedings of the 2005 IEEE international conference on
robotics and automation. IEEE. 2005, pp. 1501–1508.

[239] Dejan Milutinovi and Pedro Lima. “Modeling and optimal
centralized control of a large-size robotic population”. In: IEEE
Transactions on Robotics 22.6 (2006), pp. 1280–1285.

[240] Ignacio Mas and Christopher Kitts. “Centralized and decen-
tralized multi-robot control methods using the cluster space
control framework”. In: 2010 IEEE/ASME International Confer-
ence on Advanced Intelligent Mechatronics. IEEE. 2010, pp. 115–
122.

[241] Lynne E Parker. “ALLIANCE: An architecture for fault tolerant
multirobot cooperation”. In: IEEE transactions on robotics and
automation 14.2 (1998), pp. 220–240.

[242] Charles Lesire, Guillaume Infantes, Thibault Gateau, and Ma-
gali Barbier. “A distributed architecture for supervision of
autonomous multi-robot missions”. In: Autonomous Robots 40.7
(2016), pp. 1343–1362.

[243] Kutluhan Erol, James Hendler, and Dana S Nau. “HTN plan-
ning: Complexity and expressivity”. In: AAAI. Vol. 94. 1994,
pp. 1123–1128.

[244] Lynne E Parker, Balajee Kannan, Fang Tang, and Michael Bai-
ley. “Tightly-coupled navigation assistance in heterogeneous
multi-robot teams”. In: 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). Vol. 1. IEEE. 2004,
pp. 1016–1022.

[245] Assia Belbachir, Félix Ingrand, and Simon Lacroix. “A coopera-
tive architecture for target localization using multiple AUVs”.
In: Intelligent service robotics 5.2 (2012), pp. 119–132.



bibliography 185

[246] The Mars Helicopter Scout. https://www.youtube.com/watch?
v=w3y7iJEe7uM. Accessed: 11-12-2019.

[247] Lester E Dubins. “On curves of minimal length with a con-
straint on average curvature, and with prescribed initial and
terminal positions and tangents”. In: American Journal of mathe-
matics 79.3 (1957), pp. 497–516.

[248] David E Goldberg and Kalyanmoy Deb. “A comparative analy-
sis of selection schemes used in genetic algorithms”. In: Foun-
dations of genetic algorithms. Vol. 1. Elsevier, 1991, pp. 69–93.

[249] Peter E Hart, Nils J Nilsson, and Bertram Raphael. “A formal
basis for the heuristic determination of minimum cost paths”.
In: IEEE transactions on Systems Science and Cybernetics 4.2 (1968),
pp. 100–107.

[250] Pablo Muñoz, María D. R-Moreno, and Bonifacio Castaño.
“3Dana: A path planning algorithm for surface robotics”. In: En-
gineering Applications of Artificial Intelligence 60 (2017), pp. 175–
192.

[251] Fernando Ropero, Pablo Muñoz, and María D. R-Moreno. “A
Strategical Path Planner for UGV-UAV Cooperation on Mars
Terrains”. In: International Conference on Innovative Techniques
and Applications of Artificial Intelligence. Springer. (2018), pp. 106–
118.

[252] Gerhard Reinelt. “TSPLIB—A traveling salesman problem li-
brary”. In: ORSA journal on computing 3.4 (1991), pp. 376–384.

[253] David C Howell. Statistical methods for psychology. Cengage
Learning, 2009.

[254] Pablo Moscato et al. “On evolution, search, optimization, ge-
netic algorithms and martial arts: Towards memetic algorithms”.
In: Caltech concurrent computation program, C3P Report 826 (1989).

[255] Terry Jones. “Evolutionary algorithms, fitness landscapes and
search”. PhD thesis. 1995.

[256] Pablo Moscato and Carlos Cotta. “A modern introduction to
memetic algorithms”. In: Handbook of metaheuristics. Springer,
2010, pp. 141–183.

[257] Carlos Cotta and José M Troya. “Embedding branch and bound
within evolutionary algorithms”. In: Applied Intelligence 18.2
(2003), pp. 137–153.

[258] Quang Huy Nguyen, Yew-Soon Ong, and Natalio Krasnogor.
“A study on the design issues of memetic algorithm”. In: 2007
IEEE Congress on Evolutionary Computation. IEEE. 2007, pp. 2390–
2397.

https://www.youtube.com/watch?v=w3y7iJEe7uM
https://www.youtube.com/watch?v=w3y7iJEe7uM


186 bibliography

[259] Hans-Paul Schwefel. “Evolution strategies: A family of non-
linear optimization techniques based on imitating some princi-
ples of organic evolution”. In: Annals of Operations Research 1.2
(1984), pp. 165–167.

[260] Yuval Davidor and Oren Ben-Kiki. “The Interplay Among the
Genetic Algorithm Operators: Information Theory Tools Used
in a Holistic Way.” In: PPSN. Vol. 2. 1992, p. 75.

[261] Helen G Cobb and John J Grefenstette. Genetic algorithms for
tracking changing environments. Tech. rep. Naval Research Lab
Washington DC, 1993.

[262] Amazon reveals new delivery drone design with range of 15 miles.
https://www.geekwire.com/2015/amazon-releases-updated-

delivery- drone- photos- video- showing- new- prototype/.
Accessed: 11-27-2019.

[263] Conor McGann, Frederic Py, Kanna Rajan, Hans Thomas,
Richard Henthorn, and Rob McEwen. “A deliberative architec-
ture for AUV control”. In: 2008 IEEE International Conference on
Robotics and Automation. IEEE. 2008, pp. 1049–1054.

[264] Kanna Rajan and Frédéric Py. “T-REX: partitioned inference for
AUV mission control”. In: Further advances in unmanned marine
vehicles (2012), pp. 171–199.

[265] N. Muscettola. “"HSTS: Integrating Planning and Scheduling"”.
In: Intelligent Scheduling. Ed. by M. Zweben and M. Fox. San
Francisco: Morgan Kaufrmann, 1994, pp. 169–212.

[266] Pablo Munoz and Marıa D. R-Moreno. “Deliberative systems
for autonomous robotics: A brief comparison between action-
oriented and timelines-based approaches”. In: Proc. ICAPS
Workshop Planning and Robotics, pp. 45–54.

[267] Antonio Ceballos, Saddek Bensalem, Amedeo Cesta, L De
Silva, Simone Fratini, Félix Ingrand, J Ocon, Andrea Orlandini,
Frederic Py, Kanna Rajan, et al. “A goal-oriented autonomous
controller for space exploration”. In: ASTRA 11 (2011).

[268] Marta Cialdea Mayer, Andrea Orlandini, and Alessandro Um-
brico. “Planning and execution with flexible timelines: a formal
account”. In: Acta Informatica 53.6-8 (2016), pp. 649–680.

[269] Nicola Gigante, Angelo Montanari, Marta Cialdea Mayer, and
Andrea Orlandini. “Timelines are expressive enough to capture
action-based temporal planning”. In: 2016 23rd International
Symposium on Temporal Representation and Reasoning (TIME).
IEEE. 2016, pp. 100–109.

[270] Nicola Gigante, Angelo Montanari, Marta Cialdea Mayer, and
Andrea Orlandini. “Complexity of timeline-based planning”.
In: Twenty-Seventh International Conference on Automated Plan-
ning and Scheduling. 2017.

https://www.geekwire.com/2015/amazon-releases-updated-delivery-drone-photos-video-showing-new-prototype/
https://www.geekwire.com/2015/amazon-releases-updated-delivery-drone-photos-video-showing-new-prototype/


bibliography 187

[271] Maria Fox and Derek Long. “PDDL2. 1: An extension to PDDL
for expressing temporal planning domains”. In: Journal of artifi-
cial intelligence research 20 (2003), pp. 61–124.

[272] Sara Bernardini and David E Smith. “Translating pddl2.2 into a
constraint-based variable/value language”. In: Proc. of the Work-
shop on Knowledge Engineering for Planning and Scheduling, 18th
International Conference on Automated Planning and Scheduling
(ICAPS’08). 2008.

[273] Stefan Edelkamp and Jörg Hoffmann. “PDDL2. 2: The language
for the classical part of the 4th international planning compe-
tition”. In: 4th International Planning Competition (IPC’04), at
ICAPS’04 (2004).

[274] Jeremy Frank and Ari Jónsson. “Constraint-based attribute and
interval planning”. In: Constraints 8.4 (2003), pp. 339–364.

[275] Amedeo Cesta and Angelo Oddi. “DDL. 1: A formal descrip-
tion of a constraint representation language for physical do-
mains”. In: New directions in AI planning (1996), pp. 341–352.

[276] Pablo Muñoz, María D. R-Moreno, David F. Barrero, and Fer-
nando Ropero. “MoBAr: A hierarchical action-oriented au-
tonomous control architecture”. In: Journal of Intelligent & Robotic
Systems 94.3-4 (2019), pp. 745–760.

[277] Fernando Ropero, Pablo Muñoz, and María D. R-Moreno.
“ARIES: An Autonomous Controller For Multirobot Coopera-
tion”. In: IEEE Aerospace and Electronic Systems Magazine 34.3
(2019), pp. 40–55.

[278] Sara Fleury, Matthieu Herrb, and Raja Chatila. “GenoM: a
tool for the specification and the implementation of operating
modules in a distributed robot architecture”. In: Proceedings of
the 1997 IEEE/RSJ International Conference on Intelligent Robot and
Systems. Innovative Robotics for Real-World Applications. IROS’97.
Vol. 2. IEEE. 1997, pp. 842–849.

[279] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully
Foote, Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. “ROS:
an open-source Robot Operating System”. In: ICRA workshop
on open source software. Vol. 3. 3.2. Kobe, Japan. 2009.

[280] Fernando Ropero, Pablo Muñoz, and María D. R-Moreno. “A
Versatile Executive Based on T-REX for Any Robotic Domain”.
In: International Conference on Innovative Techniques and Applica-
tions of Artificial Intelligence. Springer. (2018), pp. 79–91.

[281] Pablo Muñoz, María D. R-Moreno, and David F. Barrero. “Uni-
fied framework for path-planning and task-planning for au-
tonomous robots”. In: Robotics and Autonomous Systems 82

(2016), pp. 1–14.



188 bibliography

[282] Jörg Hoffmann and Bernhard Nebel. “The FF planning system:
Fast plan generation through heuristic search”. In: Journal of
Artificial Intelligence Research 14 (2001), pp. 253–302.

[283] Chih-Wei Hsu and Benjamin W Wah. “The SGPlan planning
system in IPC-6”. In: Proceedings of the Sixth International Plan-
ning Competition. 2008.

[284] Fernando Ropero, Daniel Vaquerizo, Pablo Muñoz, and María
D. R-Moreno. “An Advanced Teleassistance System to Improve
Life Quality in the Elderly”. In: International Conference on In-
dustrial, Engineering and Other Applications of Applied Intelligent
Systems. Springer. (2017), pp. 533–542.

[285] Fernando Ropero, Daniel Vaquerizo-Hdez, Pablo Muñoz, David
F. Barrero, and Maria D. R-Moreno. “LARES: An AI-based
teleassistance system for emergency home monitoring”. In:
Cognitive Systems Research 56 (2019), pp. 213–222.

[286] Eric Rohmer, Surya PN Singh, and Marc Freese. “V-REP: A
versatile and scalable robot simulation framework”. In: 2013
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems. IEEE. 2013, pp. 1321–1326.

[287] Fernando Ropero, Pablo Munoz, María D. R-Moreno, and
David F. Barrero. “A Virtual Reality Mission Planner for Mars
Rovers”. In: 2017 6th International Conference on Space Mission
Challenges for Information Technology (SMC-IT). IEEE. (2017),
pp. 142–146.

[288] Keld Helsgaun. “An effective implementation of the Lin–Kerni-
ghan traveling salesman heuristic”. In: European Journal of Oper-
ational Research 126.1 (2000), pp. 106–130.

[289] Gong Mao-Guo, Jiao Li-Cheng, Yang Dong-Dong, and Ma Wen-
Ping. Evolutionary multi-objective optimization algorithms. 2009.

[290] Makoto Matsumoto and Takuji Nishimura. “Mersenne twister:
a 623-dimensionally equidistributed uniform pseudo-random
number generator”. In: ACM Transactions on Modeling and Com-
puter Simulation (TOMACS) 8.1 (1998), pp. 3–30.

[291] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez
Cáceres, Mauro Birattari, and Thomas Stützle. “The irace pack-
age: Iterated racing for automatic algorithm configuration”. In:
Operations Research Perspectives 3 (2016), pp. 43–58.

[292] Regina Nuzzo. “Scientific method: statistical errors”. In: Nature
News 506.7487 (2014), p. 150.

[293] Kevin Dorling, Jordan Heinrichs, Geoffrey G Messier, and
Sebastian Magierowski. “Vehicle routing problems for drone
delivery”. In: IEEE Transactions on Systems, Man, and Cybernetics:
Systems 47.1 (2016), pp. 70–85.



D E C L A R AT I O N

I declare that this thesis is an original report of my research, has been
written by me and has not been submitted for any previous degree.
The experimental work is almost entirely my own work; the collabo-
rative contributions have been indicated clearly and acknowledged.
Due references have been provided on all supporting literatures and
resources.

I declare that this thesis was composed by myself, that the work
contained herein is my own except where explicitly stated otherwise
in the text, and that this work has not been submitted for any other
degree or professional qualification

Alcalá de Henares, 2020

Fernando Ropero Pastor


	Dedication
	Abstract
	Resumen
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	 The Foundations
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Structure and contents
	1.4 Publications

	2 State of the art
	2.1 Discrete optimization in robotics: problems & algorithms
	2.1.1 Nearest Neighbour Search
	2.1.2 Set Cover Problem
	2.1.3 Travelling Salesman Problem

	2.2 Heterogeneous cooperative multi-robot systems
	2.2.1 Simple UGV-UAV systems
	2.2.2 Multiple UGV-UAVs systems

	2.3 Autonomous controllers for multi-robot cooperation
	2.3.1 A brief introduction to autonomous controllers
	2.3.2 Deliberation vs Reactivity in intelligent agents
	2.3.3 Autonomous controllers for mobile robotic agents
	2.3.4 Cooperation in autonomous controllers

	2.4 Summary


	 The Research Studies
	3 A cooperative simple UGV-UAV path planning algorithm
	3.1 The exploration problem
	3.2 The TERRA algorithm for 2D Euclidean spaces
	3.2.1 A Voronoi's search
	3.2.2 A combinatorial optimization algorithm
	3.2.3 A gravitational optimization algorithm
	3.2.4 A genetic algorithm for the UGV's path
	3.2.5 A search algorithm for the UAV's path

	3.3 Extending to 3D Euclidean spaces
	3.3.1 The 3D exploration problem
	3.3.2 Updating to 3D TERRA

	3.4 Experimental evaluation
	3.4.1 Characterizing TERRA in 2D
	3.4.2 Implications of 3D spaces in TERRA

	3.5 Summary

	4 A cooperative multiple UGV–UAV(s) task planning algorithm
	4.1 A generalization of the last-mile delivery problem
	4.2 The COURIER algorithm for 2D Euclidean spaces
	4.2.1 The geometrical rendezvous method
	4.2.2 The memetic search for the delivery optimization
	4.2.3 The arithmetic solver for the task planning

	4.3 Experimental evaluation
	4.3.1 Experiment design
	4.3.2 Characterizing the COURIER algorithm
	4.3.3 Performance evaluation compared to the mFSTSP heuristic approach

	4.4 Summary

	5 An autonomous controller for cooperative multi-robot systems
	5.1 A T-REX overview
	5.2 From temporal action-based to timeline-based planning
	5.3 The ARIES autonomous controller
	5.3.1 The hierarchical execution flow
	5.3.2 The leader agent
	5.3.3 The follower agent

	5.4 Experimental demonstration in the V-REP simulator
	5.4.1 Study case. Towards a future Mars exploration with a heterogeneous simple UGV-UAV system
	5.4.2 Simulation results

	5.5 Summary


	 The Conclusions
	6 Conclusions & Future Work
	6.1 Conclusions
	6.2 Future lines of work


	 Appendix
	A Experimental setting for the TERRA evaluation
	A.1 Generating random maps using a Gaussian distribution
	A.2 Tuning the genetic algorithm of the third stage

	B Additional experiments of the TERRA algorithm
	B.1 Statistical tests
	B.2 Computational results

	C Experimental setting for the COURIER evaluation
	C.1 Generating TSPLIB instances for the last-mile delivery problem
	C.2 Energy function in COURIER
	C.3 Tuning the memetic algorithm

	 Bibliography
	Declaration


